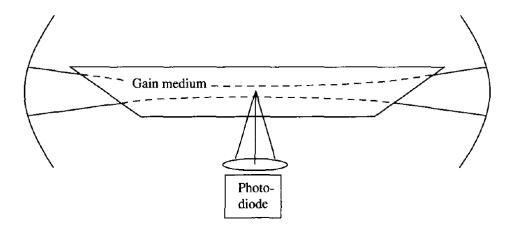
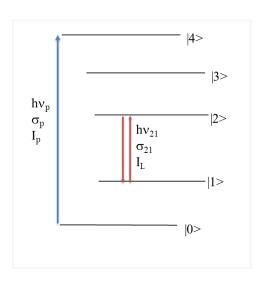

Laser Physics I (PHYS/ECE 464), Fall 2022

Homework #9, Due Monday Nov. 14


Consider the ideal laser medium shown below. The pump excites the atoms to state 2 at a rate R_2 , which then decays to state 1 at a rate τ_{21}^{-1} and back to state 0 at a rate τ_{20}^{-1} . State 1 decays back to 0 so fast that the approximation $N_1 \approx 0$ is appropriate. The radiative rate for the $2 \rightarrow 1$ transition is 6×10^6 sec⁻¹, and its width is 10 GHz. (Assume a Lorentzian profile and steady state.)

- (a) What is the stimulated emission cross section?
- (b) What must be the pump rate R₂ in order to obtain a small-signal gain coefficient of 1%/cm?
- (c) What is the saturation intensity for the $2 \rightarrow 1$ transition?
- (d) How much power (in W/cm³) is expended in creating the gain coefficient of (b)?


(e) Express the line width in Å units and cm⁻¹ units.

The purpose of this problem is to point out a simple experimental method for estimating the saturation intensity, $I_{sat.}$, of a laser. You are given the experimental apparatus shown below, which is made up of a continuously pumped gain medium (small-signal gain coefficient γ_0), two nearly perfect reflecting mirrors, and a photodetector. The photodetector records the side fluorescence power emanating from a small volume of the gain medium. Assume that the laser transition is homogeneously broadened and that the lower laser level population is negligible compared to that in the upper state.

- (a) If P_0 is the side fluorescence power (W/cm⁻³) that is observed with one of the cavity mirrors blocked and P is measured when the laser is operating normally (i.e., mirror unblocked, everything else the same), then derive a simple expression that relates P/P_0 to the saturation intensity of the gain medium.
- (b) If the side fluorescence is observed to be suppressed by 50% when the intercavity laser flux is 100 W/cm^2 , what is $I_{\text{sat.}}$?
- **3. Rate Equations:** Write down the rate equations for the following 5-level system where optical pumping is from the ground state to level 4, and stimulated absorption/emission is between levels 1 and 2.

The known paramers (in addition to those shown in the figure) are each level liftime τ_j (j=1,2,3,4), branching rations ϕ_{ji} (i<j), and the total atomic density (N_t). Assume all degnerency factors are unity.

