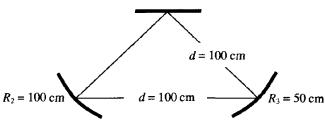
Laser Physics I (PHYC/ECE 464) Homework #4, Due Monday, Sept. 26, Fall 2022

1 Consider a linear combination of two equal amplitude $\text{TEM}_{m,p}$ modes given by:

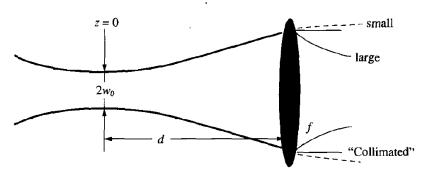
 $\mathbf{E} = E_0 \left\{ (\text{TEM}_{1,0}) \mathbf{a}_y \pm j (\text{TEM}_{0,1}) \mathbf{a}_x \right\}$

- (a) Sketch the "dot" pattern or equal intensity contours for each component (i.e., a_x or a_y). Indicate the direction of the electric field.
- (b) Sketch the pattern for the linear combination.
- (c) Label the positions where the intensity is a maximum and a minimum. (This is sometimes referred to as the "donut mode" or $\text{TEM}_{0.1}^*$.
- 2 Is the cavity shown below stable? Demonstrate the logic of your answer by (a) constructing a unit cell starting at the flat mirror, (b) finding the *ABCD* matrix for that cell, and (c) applying the stability criteria. (d) What are the circumstances under which the quantity [AD - BC] can be different from 1? Why is AD - BC always equal to 1 for a cavity? (Ignore astigmatism)

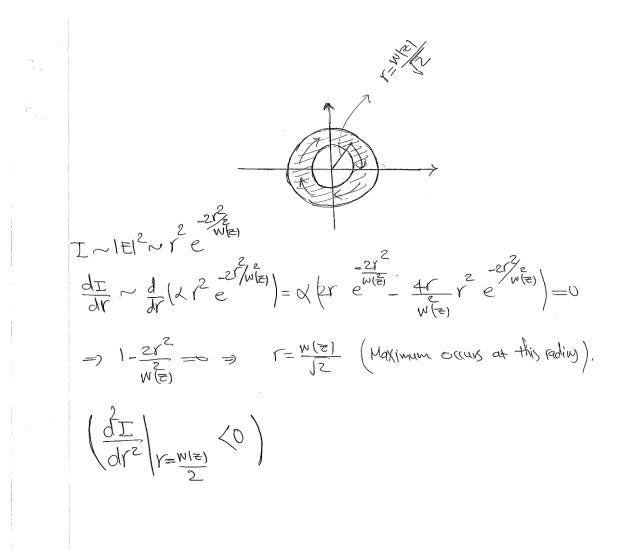
Bonus: Show the effect of astigmatism on the stability considering that the cavity axis below forms an equilateral triangle. $R_1 = \infty$

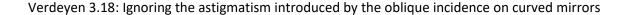


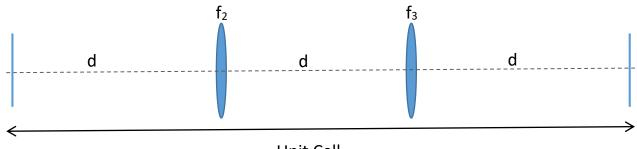
3 A focused Gaussian beam reaches its minimum spot size w_0 at z = 0 where $R = \infty$ and then propagates to a thin lens of focal length f located a distance d from z = 0. If w_0 is large, then the beam exiting the lens will be focused. If it is too small, then the lens merely reduces the far field spreading angle. Find the critical value of w_0 such that the output beam is "collimated"; that is, $R(z = d^+) = \infty$ also.



4. Using Eq. (5.2.8), write z_0^2 in terms of the g-parameters (i.e. g_1 and g_2). From this, derive the stability condition of the cavity in terms of g_1 and g_2 . Compare this with the geometric optics results obtained eralier.







Unit Cell

The equivalent transmission system for the ring cavity is

$$T = \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & d \\ -1/f_3 & 1 - d/f_3 \end{pmatrix} \begin{pmatrix} 1 & d \\ -1/f_2 & 1 - d/f_2 \end{pmatrix} = \begin{pmatrix} 1 - \frac{2d}{f_2} - \frac{d}{f_3} + \frac{d^2}{f_2 f_3} & \text{something} \\ \text{something} & 1 - \frac{2d}{f_3} - \frac{d}{f_2} + \frac{d^2}{f_2 f_3} \end{pmatrix}$$

If d=100 cm, f₂=50cm, f₃=25 cm, then A=+1 and D=-1, and $S = \frac{A+D+2}{4} = \frac{1}{2}$ (>0 and <1); the cavity is therefore stable.

If the entrance and exit planes have different indices of refraction, the AD-BC= $n_2/n_1 \neq 1$.

In a cavity (roundtrip unit cell), the start and stop planes are always the same, thus AD-BC=1 always.

BONUS PART: With astigmatism, the angle of incidence on each mirror is $\theta = 60/2$ degrees. Then, f's above will need to change to f/cos(θ) and f*cos(θ) for sagittal and tangential components respectively.

This leads to S=0.103 (for sagittal, stable) and S=1.137 (tangential, unstable). The cavity then as a whole is not stable.

 $R_2 = \frac{d_+ z_2^2}{d_+ z_2} = f \implies z_2^2 = f d_- d^2$ $Z_{0} = \frac{\pi W^{2}}{\lambda_{2}}; \qquad W_{0} = \frac{\chi^{2}}{\pi^{2}} \left(fd - d^{2} \right)$ $\Rightarrow \left(W_{\circ} = \int_{\overline{W}}^{\overline{W}_{\circ}} \left(d(f-d) \right)^{1/4} \right)$ So the beam waist must be this comment to have a plane worke after (R3=~) the lens. (Alternative way : alachare the matrix from the bean varst eno to the lay and then use the ABCD law to find the of Parameter after the ley. Plane workers キーモモージョーにろ $T = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & d \\ -1 & 1 & -d \\ -1 & -d$

$$\begin{split} Nbm, USE \quad & \frac{1}{4z} = \frac{C+D(1/4)}{A+B(1/4)} \\ \Rightarrow \frac{1}{4z} = \frac{-1/2}{1+} \frac{+(1-d(g))}{1+} \frac{1}{1cs} = \frac{-i(z-f_{F}+1)-d(g)}{iz+d} \times \frac{-i(z-g)}{iz+d} \\ & = \frac{d(1-d(g)-z^{2}/f_{F}-iz)d(g-iz)(1-d(g))}{d^{2}+z^{2}} \\ & = \frac{d(1-d(g)-z^{2}/f_{F}-iz)d(g-iz)(1-d(g))}{d^{2}+z^{2}} \\ & = \frac{d(1-d(g)-z^{2}/f_{F}-iz)d(g-iz)(1-d(g))}{d^{2}+z^{2}} \\ \text{on the other hand,} \quad & \frac{1}{4z} = \frac{1}{R_{0}(g)} - i(\frac{z-h}{R_{0}(g)}) \\ & = \frac{1}{R_{0}(g)} \frac{1}{4z} \int_{z}^{z} \frac{1}{R_{0}(g)} = \frac{1}{R_{0}(g)} \\ & = \frac{1}{R_{0}(g)} \frac{1}{4z} \int_{z}^{z} \frac{1}{R_{0}(g)} = \frac{1}{R_{0}(g)} \\ & = \frac{1}{R_{0}(g)} \frac{1}{4z} \int_{z}^{z} \frac{1}{R_{0}(g)} \\ & = \frac{1}{R_{0}(g)} \frac{1}{d^{2}+z^{2}} \\ & = \frac{1}{R_{0}(g)} \frac{1}{d^{2}+z^{2}} \\ & = \frac{1}{R_{0}(g)} \frac{1}{d^{2}+z^{2}} = 0 \\ & = \frac{1}{2s} - \frac{1}{2s} \int_{z}^{z} \frac{1}{R_{0}(g)} \frac{1}{(z-g)} \\ & = \frac{1}{R_{0}(g)} - \frac{1}{2s} \\ & = \frac{1}{R_{0}(g)} \int_{z}^{z} \frac{1}{R_{0}(g)} \\ & = \frac{1}{R_{0}(g)} \\ & = \frac{1}{R_{0}(g)} \int_{z}^{z} \frac{1}{R_{0}(g)} \\ & = \frac{1}{R$$

 $Z_{0}^{2} = \frac{d(R_{1}-d)(R_{2}-d)(R_{1}+R_{2}+d)}{(R_{1}+R_{2}-2d)^{2}};$ $\frac{1}{2} = \frac{1}{R_{1,2}} = \frac{$ $= \frac{\partial^{4}(\frac{1}{1-g_{1}})(\frac{1}{g_{1}-g_{2}})g_{1}g_{2}(1-g_{1}g_{2})}{\partial^{4}g_{1}g_{2}(1-g_{1}g_{2})} = \frac{\partial^{4}g_{1}g_{2}(1-g_{1}g_{2})}{\partial^{4}g_{1}g_{2}(1-g_{1}g_{2})}$ $= \frac{(1-g_1)(1-g_2)(\frac{g_1g_1}{1-g_1} + \frac{g_2g_2}{1-g_2})^2}{(1-g_1)(1-g_2)(1-g_2)(1-g_2)(1-g_2)^2} \frac{[g_1(g_1+g_2-2g_1g_2)]^2}{(1-g_1)^2(1-g_2)^2}$ $= 2 = 2^{2} = 2^{2} \frac{1}{2} \frac{1}{2}$ $(\theta_1 + \theta_2 - 2\theta_1\theta_2)^2$ Stability Cond. Z. > 0 - 0 8,82 (1-8,8) > 0 $= 2, 2, 2, 20 = 0 \leq 2, 9, \leq 1$ 1 - 2, 2, 20