Laser Physics I (PHYC/ECE 464)

FALL 2021
 University of New Mexico
Final Exam
Closed Book, Closed Notes, Calculator will be provided.

Time: 4:00-6:00 pm

NAME \qquad
last
first
\square

Total $=100$ points

Please staple and return these pages with your exam.

1. (20 points)

Drawn to scale in the graph below is the power transmission of a scanning symmetric Fabri-Perot (FP) cavity as the distance d is varied from its intial $\mathrm{d}_{0} \approx 0.5 \mathrm{~cm}$. The source is a single wavelength laser fixed at wavelength λ_{0}. (Assume $\mathrm{n}=1$).

(a) What is λ_{0} ?
(b) Estimate the Finesse and $\Delta v_{1 / 2}$ (in Hz).
(c) What is the reflectiviety (R) of the mirrors?
(d) If refletivity R were to change to $\sim 85 \%$, what will be the new $\Delta v_{1 / 2}$? Draw the approximate tranmsition cruve versus d for this case on top of the graph above.
2. (25 points) Consider a fundamental Gaussian beam with known Z_{0} and wavelength λ_{0} travelling from left to right, as shown below.

(a) A glass window of thickness d and index of refraction n is inserted at a distance z_{1} prior to $\mathrm{z}=0$ (focus) plane as shown. Derive the distance (Δz) and the direction (sign) by which the new focal point shifts. What is the new z_{0} and the beam waist (w_{0}) (do they change at all)?

(b) Repeat part (a) for the case when the original Gaussian beam enters a material of index n with infinite thickness- as shown below. What is the new z_{0} and the beam waist (w_{0})?

3. (25 points) Consider the solid-state laser system below. The linear cavity parameters are: $\boldsymbol{R}_{1}=0.99$ and $\boldsymbol{R}_{2}=0.95$. The gain crystal is cut at Brewster angle to minimize reflective losses but it still has a transmission $T_{B}=0.998$ per surface.

(a) What is the survival factor S of the passive cavity and the threshold integrated gain $\left(\gamma_{t h} l_{g}=g_{t h}\right)$?
(b) Express cavity losses (1-S) as $\approx \mathrm{T}_{2}+\mathrm{L}_{\mathrm{i}}$. What is L_{i} ? Find the needed integrated gain $\left(g_{0}\right)$ for which the existing output coupling is optimum.
(c) What is the preferred direction of polarization (X, Y or Z) of this laser, and why?
(d) Estimate the narrowest single-mode CW linewidth (in Hz) that can be achieved if this laser outputs 1 W after stabilization. Assume a cavity roundtrip time $\left(\tau_{R T}\right)$ of 1 ns .
4. (30 points) Consider the following unidirectional ring laser. Cavity parameters are given in the Fig. A. The following parameters are known for the homogeneously broadened gain medium:

$$
\begin{aligned}
& \Delta v \cong 2 \times 10^{13} \mathrm{~Hz} ; \quad \lambda_{0}=1 \mu \mathrm{~m} ; \quad \sigma_{21}\left(v_{0}\right)=3 \times 10^{-17} \mathrm{~cm}^{2} ; \quad \tau_{1} \approx 0 ; \quad \tau_{2} \approx 1 \mu \mathrm{~s} ; \quad \mathrm{g}_{1}=\mathrm{g}_{2} \\
&\text { beam area } \left.\mathrm{A}=10^{-4} \mathrm{~cm}^{2} ; \quad \text { n(gain medium }\right)=2
\end{aligned}
$$

(a) What is the threshold upper state population $\left(\mathrm{N}_{2}{ }^{\text {th }}\right)$?
(b) What is the cw output power if this laser were to be pumped $\times 9$ above the threshold? Assume (and justify) high-Q cavity approximation. Ignore the transmission (leakage) through high reflectivity mirrors.
(c) Estimate the excitation pump power (in Watts) required to sustain the output power in (b). Assume that the lower laser state (level 1 in Fig. B) is 2 eV above the ground state.
(d) If this laser were to be cw-modelocked, describe (and graph) the temporal behavior of the output pulsetrain. Assume the shortest possible pulse and ignore dispersion. Estimate the number of longitudinal modes that are oscillating. Estimate the peak output power if pumped at $\times 9$ above the threshold.
(e) If this laser were to be Q-switched, estimate the pulse width. Quantitatively draw a typical such pulse.
(f) Repeat part (b) if this ring laser were to operate bi-directional.

