Examples of Specific Laser Systems

Gas Lasers

 $CO_2~(9\mathchar`-10~\mu\mbox{m})$, High Power He:Ne (632 nm) , Ar (ion) Laser (520 nm) Excimer (UV) Lithography

Solid-State Lasers

Nd:YAG , Ti:Sapphire (Ultrafast Revolution)

Fiber Lasers (Rare-Earth Doped Fiber Lasers) Yb³⁺ (5+ kW), Tm³⁺, Ho³⁺ (2 μm), Er³⁺ (1.5 μm)

Dye Lasers

Chemical Lasers COIL (7+kW), MIRACL (>1 MW !!)

Semiconductor Lasers

Laser Market and Applications

Laser segments 2018

Laser revenues and 2019 forecast

Optical Transitions

Proprietary Data University of New Mexico

Typical laser efficiencies η :

$\eta = \frac{\text{output power}}{\text{electrical input power}}$

Argon - ion	< 0.1%
CO ₂ laser	< 20%
Excimer	< 20%
GaAlAs (diode laser)	< 40%
HeNe	< 0.1%
Nd:YAG	< 10%

Gas Lasers (Examples: HeNe, Ar⁺, Excimer, CO₂,...)

The excitation mechanism in most gas lasers is via electric discharge

The first Gas Laser: He-Ne

Ali Javan, et al. (Bell Labs, 1962)

- The second working LASER system to be demonstrated.
- The first gas LASER to be produced.
- The first LASER to produce a continuous output beam
- The active laser medium is a gaseous mixture of He & Ne atoms, in a roughly 10:1 proportion
- The gas is enclosed in a cylindrical quartz DISCHARGE tube

Comparison of Gas Lasers

Laser Type	Linear Power Density W/m	Maximum Power W	Power Efficiency %
He-Ne	0.1	1	0.1
Argon	1-10	50	0.1
CO ₂	60-80	>104	15-20

CO₂ Lasers (9-11 micron)

C. K. N. Patel, "Continuous-Wave Laser Action on Vibrational Rotational Transitions of CO2," Physics Review, Vol. 136 A, (Nov., 1964) P. 1187

Applications (*pealing peanuts to star wars*)

- Industrial (cutting, welding, material processing)
- Military (range finding, targeting, remote sensing, sensor blinding, destroying ...)
- •Medical (cutting, skin resurfacing)

•....

Molecular Vibrations and Rotations

•Transitions are between molecular vibrational-rotational levels.

Modes of vibrations:

- •Symmetric stretch
- •Asymmetric stretch
- •Bending mode

Simple Harmonic Oscillator (Quantum Mechanics):

$$E(n_1, n_2, n_3) = hv_1(n_1 + 1/2) + hv_2(n_2 + 1/2) + hv_3(n_3 + 1/2)$$

Section 11.2 p.3

CO₂ Laser Transitions

Section 11.2 p.4

Effect of Gas Mixtures: $CO_2 + N_2 + He$

- •Nitrogen helps populating the upper laser level in a discharge
- •Helium helps to depopulate the lower laser level by collisions

Other possible additions to the gas mixture: CO, ${\rm H_2}$

Typical Co₂:N₂:He Gas Ratios Recommended by Laser Manufacturers

CO2	N ₂	Не	Laser Power Rating W
1	3	17	20
1	1.5	9.3	50
1	1.5	9.3	100
1	1.35	12.5	275
1	8	23	375
1	6.7	30	525
1	2.3	17	1000

11.3 Gas Discharge Phenomena

11.4 Specific Types of CO₂ Lasers

0.2 W/cm in a waveguide laser

Laser Hardened Materials Evaluation Laboratory (LHMEL) WP-AFB, Dayton, OHIO

Electric Discharge Coaxial Laser (EDCL)

Section 11.4 p.4

Gas-Dynamic Lasers Basov & Oraevskii (1963)

Principle: Population inversion by rapid expansion (supersonic flow) of a super-heated gas

• cw powers up to 1 MW have been obtained from gas-dynamic CO₂ lasers !!

Section 11.4 p.5

Gas-Dynamic Lasers

High Energy Laser Experimental Germany, 1970's

• Pulsed CO₂ Lasers

Most Common: Transversely Excited Atmospheric (TEA) CO₂ Lasers

- Repetition rates: 1Hz. to 1 kHz.
- Pulse energy: 50 mJ to 10 J (amplified)

*Nobel Prize, Physics (1964), Shared with Townes and Prokhorov

0.5 **Proprietary Data**

University of New Mexico

Nikolai Basov*, V. A. Danilychev and Yu. M. Popov, at the Lebedev Physical Institute

Applications: lithography, micromachining and eye surgery

Molecules exist only in the excited state (Excimer=Excited-Dimer) or (Exciplex= Exciated-Complex)

Excimer Lasers

Eye surgery

Lithography

ANDY_GEC2009

Argon Ion Laser

488 and 514 nm

Organic Dye Lasers

Solid-State Lasers

- The lasing atoms (ions) are fixed in a solid (crystal, glass).
- Solid-state lasers can operate in continuous (cw) or various pulsed modes.
- The active ions are most commonly either a rare-earth or transition metal elements

Examples:

(a) Nd³⁺:YAG $\lambda = 1.064 \mu m$, 1.331 μm (b) Nd³⁺:glass $\lambda = 1.062 \mu m$ (silicate glass), $\lambda = 1.080 \mu m$ (fused silica) (d) Hm³⁺:YAG, Tm³⁺:YAG $\lambda = 2.1 \mu m$ (e) Yb³⁺:YAG, $\lambda = 1.03-1.05 \mu m$ (f) Ti³⁺:sapphire, $\lambda = 0.7 - 1.1 \mu m$ (g) Fe²⁺:ZnSe $\lambda = 3.7 - 5.5 \mu m$

The 4f-4f transitions in Rare-Earths lons:

1A

Hydrogen 1.00794

Lifhium 6.941

19 K

Rb

55 Ċs

> 2 3

0 1

L

5

6

4

Optical Science & Engineering University of New Mexico

²F_{7/2}

18 4A 14 5A 15 2A 2 3A 13 6A 16 7A 17 He 10 Ne 4 Be Carbor Ν Ó F Oxygen 15.9994 16 5 Sulfur 32.066 17 Chlorine 35.4527 12 14 Si 15 P 18 3B 2B Na Mg 4B 5B 6B 7B 7 1B Ar 4f ²⁸ ²⁹ ³⁰ ³¹ ³² ³³ ³³ ³³ ³³ ³³ 20 Ca 21 Sc 22 **Ti** 23 V ²⁴ Cr Mn Fe 27 Co 34 35 Br 36 Kr Se 6 53 54 38 Sr ⁴⁰ Zr 11 42 43 44 45 46 47 48 49 50 51 Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb 52 39 **Y** Te Xe Energy 5 74 W
 Yeil
 101.07
 102.9033

 75
 76
 77

 Ree
 Os
 Ir

 Rhenium
 Osmium
 Iridium

 186.207
 190.2
 192.22

 Notaci
 Off-Sec.
 Pice
 56 *La Hf 73 **Ta**
 190.42/v
 183.83
 186.207
 190.2
 192.22

 105
 106
 107
 108
 109

 Db Sg
 Bb
 Hs
 Mt
 109

 Dubring
 Sepbogging
 Bohran
 Bohran
 Methods
¹⁰⁴ Rf ⁸⁷ Ra ³⁹ Ac 111 110 112 Xe 3 ⁵⁸ Ce Nd Pm Sm Eu Gd tb Dy Ho Er Tm Yb Lu Pr *Lanthanide Series
 92
 93
 94
 95
 96
 97
 98

 U
 Np
 Pu
 Am
 Cm
 Bk
 Cf
Th Pa 99 100 101 2 Es Fm Md No Lr [†] Actinide Series Central Washington University © 1998 Orbital Radius **Yb** (Xe)4f¹³6s² 4fFree Ion **Crystal Field 6**S $Yb^{3+} = (Xe)4f^{12}$ O, O_{h}, T_{d} SO_3 all other $^{2}F_{5/2}$ 5**/**S [Xe]4f¹³-²F Spin Orbit Coupling ${}^{2S+1}L_{I}$ Letter S Р D F G Η Ι

Degeneracy: g = 2J + 1

Rare-Earth Ion Doped Lasers

Lanthanides

Quasi Four-Level Lasers

McCumber Relation

D. E. McCumber, "Einstein relations connecting broadband emission and absorption spectra", Phys. Rev. 136 (4A), A954 (1964),

$$\sigma_{\rm abs}(\nu) = \sigma_{\rm em}(\nu) \exp\left(\frac{h\nu - E_0}{k_{\rm B}T}\right)$$

Layout of <u>early</u> (flash-lamp or arc-lamp pumped) solid-state lasers

Maiman's Ruby Laser

Example: Nd:YAG laser YAG: Yttrium Aluminum Garnet (Y₃Al₅O₁₂)

DPSS : Diode-Pumped Solid-State Laser

Diode Lasers for Pumping

Semiconductor lasers will be covered in more detail (next lecture)

- Efficient (current injection)
- High power
- Designer Wavelength
- Poor Beam Quality
- Broadband (3-5 nm)

High Power (Diode Bar) Fiber Coupled

DPSS: Diode-Pumped Solid-State Laser

Example Nd:YVO₄ (Vanadate)

From laser pointers (5-10 mW) to 100W lasers

5-10W \$10k-\$40k

Titanium doped sapphire (Ti³⁺ :Al2O3) laser The jewel of ultrafast lasers

Historical Progress in Ultrashort Pulses

Nobel Prizes

John L. Hall and Theodor W. Hänsch"

"for their contribution to the development of laserbased precision spectroscopy, including the optical frequency comb technique" (2005)

Gérard Mourou and Donna Strickland

"for their method of generating high-intensity, ultrashort optical pulses" 2018

<u>Ahmed H. Zewail</u> "for his studies of the transition states of chemical reactions using femtosecond spectroscopy" 1999 (Chemistry)

High Power Scaling: Heat is such a nuisance!

Increase surface-to-volume ratio (fibers, disks)

first demonstration of a fiber laser: in the early sixties !

E. Snitzer, "Neodymium glass laser," Proc. of the Third International conference on Solid Lasers, Paris, page 999 (1963). C.J. Koester and E.Snitzer, "Amplification in a fiber laser," Appl. Opt. 3, 10, 1182 (1964).

Fiber Lasers

Single-Mode Fiber

 $6~\mu m$ core / 125 μm cladding

۰

02

- + High Beam Quality
- Lower Power Pumping
- Expensive Pumping

Multimode Fiber

50 μm core / 125 μm cladding

- + Higher Power Pumping
- + Inexpensive Pumping
- Poor Beam Quality

Optical Fiber Modes

Graphics: courtesy of Colin Diehl & Jered Richter

Example: Erbium-Doped fiber Lasers

The wavelength of about 1550 nm is particularly interesting for applications in telecommunication.

Fiber-optic Communications

Fiber transmission line

High Power Fiber Lasers

Diode Pumped at 940-980 nm

Laser: 1020-1050 nm

High Power Fiber Lasers Double-Clad Fiber

- Laser light propagates in single-mode core
- Pump light propagates in inner cladding

100 kW (current record)!

IPG Fiber Lasers

A single module can supply:

- 250, 400, 800, 1000+ W of laser power
- Wavelength of 1070nm (NIR)
- One 7 or 15 um fiber core
- 0.34-0.41mm*mrad beam divergence
- $T \times H \times D = 60 \times 33 \times 4.7 \text{ cm}$
- Efficiency (DC) > 35%
- Building blocks (modules) for HPFLs

PHOTONICS

ALAW 2009

OCCOLANA IA

Thin Disk Lasers

Yb:YAG

>10 kW CW

This principle does show 8 passages through the disc, in actual fact more are performed.

Chemical Lasers

- electrical power supply is not needed
- airborne lasers
- first chemical laser: 1964

chemical reaction:

- exothermic
- generation rate must be large enough to overcome spontaneous emission and collisional relaxation

_			
Exa	mp	les:	

$F + D_2 \rightarrow DF^* + D$ DF $3.5 - 4.1 \mu m$ molecules in an excited vibrational state $CI + HI \rightarrow HCI^* + I$ HCI $3.5 - 4.1 \mu m$ molecules in an excited vibrational state $H + Br_2 \rightarrow HBr^* + Br$ HBr $4.0 - 4.7 \mu m$ $F + H_2 \rightarrow HF^* + H$ HF $3.5 - 4.1 \mu m$ $I + O_2^* \rightarrow I^* + O_2$ I $1.31 \mu m$	reaction	active medium	wavelength	
CI + HI \rightarrow HCI* + IHCI3.5 - 4.1 μ mmolecules in an excited vibrational stateH + Br2 \rightarrow HBr* + BrHBr4.0 - 4.7 μ mF + H2 \rightarrow HF* + HHF3.5 - 4.1 μ mI + O2* \rightarrow I* + O2I1.31 μ m	$F + D_2 \rightarrow DF^* + D$	DF	3.5 - 4.1 μm	
$H + Br_2 \rightarrow HBr^* + Br$ HBr $4.0 - 4.7 \mu m$ $F + H_2 \rightarrow HF^* + H$ HF $3.5 - 4.1 \mu m$ $I + O_2^* \rightarrow I^* + O_2$ I $1.31 \mu m$	$CI + HI \rightarrow HCI^* + I$	HCI	3.5 - 4.1 μm	molecules in an excited vibrational state
$F + H_2 \rightarrow HF^* + H$ HF $3.5 - 4.1 \mu m$ $I + O_2^* \rightarrow I^* + O_2$ I $1.31 \mu m$ atoms in an excited electronic state	$H + Br_2 \rightarrow HBr^* + Br$	HBr	4.0 - 4.7 μm	
$I + O_2^* \rightarrow I^* + O_2$ I 1.31 µm atoms in an excited electronic state	$F + H_2 \rightarrow HF^* + H$	HF	3.5 - 4.1 μm	
	$ +0_2^* \rightarrow ^* + 0_2$	I	1.31 μm	atoms in an excited

The chemical oxygen-iodine laser (COIL): MW CW Power !!

Singlet oxygen (dioxidene) has a >40 min lifetime.

steps:

1. generation of singlet oxygen $Cl_2 + H_2O_2 + 2NaOH \rightarrow O_2(^1\Delta) + 2H_2O + 2NaCl$

2. production of excited iodine $O_2(^1\Delta) + I \leftrightarrow O_2(^3\Sigma) + I^*$

3. lasing of excited iodine

schematic diagram of a chemical iodine laser

Free Electron Laser (FEL)

Semiconductor Lasers

A Variety of Small Laser Diodes

Laser Market and Applications

Laser segments 2018

Laser revenues and 2019 forecast

- Direct bandgap materials
 - CB minimum and VB maximum occur at the same k
 - Examples
 - GaAs, InP, InGaAsP
 - (Al_xGa_{1-x})As, x < 0.45

- Indirect bandgap materials
 - CB minimum and VB maximum occur at different k
 - Example
 - Si, Ge
 - (Al_xGa_{1-x})As, x > 0.45
 - Not "optically active"

E-k diagrams

Optical Interactions in a Direct-Gap Semiconductor

A Brief Introduction to Semiconductors Energy Bands

http://britneyspears.ac/lasers.htm !!!???

Nonequilibrium Electron-Hole Injection

Section 12.1 p.2

p-n junctions

Doping with Impurities

n-type

Examples: GaAs doped with Br

Si doped with P

p-type

Examples: GaAs doped with Zn

Si doped with Al

Semiconductor junction lasers

Edge-Emitting Homojunction Laser Diodes

Section 12.2 p.2

Homojunction Lasers have very high current threshold mainly because.

• Electrons and holes are free to diffuse and therefore dilute the gain (no carrier confinement)

•Optical mode has poor overlap with gain (no optical confinement or guiding)

12.3 Heterojunction Lasers Diodes

Section 12.3 p.2

Edge-Emitting Heterojunction Laser Diodes

Edge-Emitting Buried Heterojunction Laser Diodes

Schematic illustration of the the structure of a double heterojunction stripe contact laser diode

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

12.4 Quantum Well Lasers

Multiple Quantum Well (MQW) Lasers

Epitaxial Growth

Section 12.4 p.2

High Power Diode Bars

•P>100 W (cw)

- Diode-pumping solid-state lasers (DPSS)
- Material Processing

Section 12.4 p.3

Vertical Cavity Surface Emitting Lasers (VCSEL)

- •Good mode quality couples to fiber efficiently for telecom applications
- •Single mode operation
- •2-D structures cam be made
- •Low power

Optically-Pumped Semiconductor Lasers (OPSL)

Section 12.4 p.4

Laser Diodes Cover the Spectrum

Compound	Spectral Region Notes	
Al _x Ga _{1-x} N GaN In _x Ga _{1-x} N	uv uv (350 nm) blue (480-400 nm)	data storage, display
$Ga_{x}I_{1-x}P$ (x=0.5) $Ga_{x}Al_{1-x}As$ (x=0-0.45)	670 nm 620-895 nm	display
GaAs In _x Ga _{1-x} As (x=0.2)	904 nm 980 nm	diode pumping solid-state and fiber lasers.
$In_xGa_{1-x}As_yP_{1-y}$ (x=0.73, y=0.58) (x=0.58, y=0.9)	1100-1650 1310 nm 1550 nm	Telecom

PbSSe	4200-8000 nm	cryogenic
PbSnTe	6300-29,000 nm	cryogenic
Original concept and theoretical prediction

R. F. Kazarinov and R. A. Suris, Fiz. Tekh. Poluprovodn, 5, pp. 797-800, (1971).

Section 12.5 p.2

Wide wavelength-range of QC lasers

QC lasers cover entire mid-infrared wavelength range (3.4 - 17 µm) by tailoring layer thicknesses of the same material

THE END !

"Mr. Osborne, may I be excused? My brain is full."