Laser Physics I (PHYC/ECE 464)
 FALL 2014

Midterm Exam, Closed Book, Closed Notes
Time: 5:30-7:00 pm

NAME \qquad
last

Total $=100$ points

Please staple and return these pages with your exam.

1. Cavity Mode: In the 3-mirror cavity shown, the length L between the two flat mirrors is adjustable.

(a) Find the location the size of the minimum beam waist $\left(\mathrm{w}_{0}\right)$ as a function of L . (Hint: It is easier to employ the method of matching the phase front curvature rather than using ABCD) 15 points
(b) What is the range of L for which the cavity is stable? 5 points

Fabry-Perot with absorption

Consider a Fabry-Perot whose back mirror has a reflectivity of $100 \% \quad\left(\mathrm{R}_{2}=1\right)$ and $\mathrm{R}_{1}<1$. (Such a device is known as Gires-Tournois Interferometer or GTI). The inside of this interferometer is filled with a gas with an absorption coefficient α as shown in the figure.

(a) Plot reflection (R) and transmission (T) as a function of $\theta=\mathrm{kL}$ for no loss condition ($\alpha=0$) for a light beam incident from left as shown. (Does the value of R_{1} matter for these plots?) (5points)
(b) Fix $\mathrm{R}_{1}=0.9$ and plot R and T (as in part a) for $\alpha \mathrm{L}=0.1$ and 0.2. Explain the features. (10 points)
(c) Now fix $\alpha \mathrm{L}=0.1$ and tune FP to resonance by keeping $\mathrm{L}=\mathrm{m} \lambda / 2$ ($\mathrm{m}=$ integer). Write the expression for R and T as a function of the front reflectivity R_{1}. Plot R and T vs. R_{1} varying between 0 to 1 . Something interesting should happen somewhere in this range. Identify it and explain your results in terms of absorption of light in the filling material.
(a) Derive the ray matrix for the "thick" plano-convex lens shown below: (15 points)

3. (20 points)

Drawn to scale in the graph below is the power transmission of a scanning Fabri-Perot as the distance is increased from its intial 1 cm to $1 \mathrm{~cm}+1.44 \mu \mathrm{~m}$. The source is a single wavelength laser at wavelength λ_{0}.

a) What is λ_{0} ? ($5 p t s$.)
b) What is $\Delta \nu_{1 / 2}($ in MHz$)$? (5 pts .)
c) What is the finesse? (5pts.)
d) What is the photon lifetime? (5pts.)
4. (25 points) Consider a pressure-broadened gaseous two-level medium with the following property:

- Spontaneous emission lifetime: $\tau_{s p}=1 \mu s$
- Homogeneous linewidth $\Delta v_{h}=1.5 \mathrm{THz}$
- Line center wavelength: $\lambda_{0}=5 \mu \mathrm{~m}$
- Molecular density (concentration): $N_{\text {total }}=2.5 \times 10^{19} \mathrm{~cm}^{-3}$
- Non-degeneracy factors: $g_{1}=5, g_{2}=1$
(a) What is the absorption coefficient $\alpha\left(\mathrm{cm}^{-1}\right)$ at the line center $(5 \mu \mathrm{~m})$ when all the molecules are in their ground state (level 1)? (12.5 pts.)
(b) What fraction of the molecules needs to be excited into level 2 in order to make this gas transparent (i.e. the onset of gain) at $5 \mu \mathrm{~m}$? (12.5pts.)

Hermite-Gaussian Beams:

$$
\begin{aligned}
& \frac{E(x, y, z)}{E_{0}}=H_{m}\left(\frac{\sqrt{2} x}{w(z)}\right) H_{p}\left(\frac{\sqrt{2} y}{w(z)}\right) \frac{w_{0}}{w(z)} \exp \left(-i \frac{k r^{2}}{2 q(z)}\right) \times \exp \left(-i\left[k z-(1+m+p) \tan ^{-1}(z / z 0)\right]\right) \\
& \frac{1}{q(z)}=\frac{1}{R(z)}-i \frac{\lambda}{\pi w^{2}(z)}, \quad w^{2}(z)=w_{0}^{2}\left(1+\frac{z^{2}}{z_{0}^{2}}\right), \quad R(z)=z\left(1+\frac{z_{0}^{2}}{z^{2}}\right), \quad z_{0}=\frac{\pi n w_{0}^{2}}{\lambda_{0}}
\end{aligned}
$$

$k=n \frac{\omega}{c}=\frac{2 \pi n}{\lambda_{0}} \quad$ Irradiance: $I=\langle S\rangle=\frac{n c \varepsilon_{0}}{2} E_{0}^{2} \quad$ Snell's Law: $n_{i} \sin \theta_{i}=n_{t} \sin \theta_{t}$

$$
\begin{array}{rlr}
\text { Fresnel: } & r_{\|}=\frac{n_{t} \cos \theta_{i}-n_{i} \cos \theta_{t}}{n_{t} \cos \theta_{i}+n_{i} \cos \theta_{t}}=\frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)} & r_{\perp}=-\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}=-\frac{\sin \left(\theta_{i}-\theta_{t}\right)}{\sin \left(\theta_{i}+\theta_{t}\right)} \\
t_{\|}=\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{t}+n_{t} \cos \theta_{i}}=\frac{2 \sin \theta_{\mathrm{t}} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right) \cos \left(\theta_{i}-\theta_{t}\right)} \quad t_{\perp}=\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}=\frac{2 \sin \theta_{\mathrm{t}} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right)}
\end{array}
$$

when there is total internal reflection at an air or vacuum interface:
$r_{\|}=\frac{\cos \theta_{i}-i n_{i} \sqrt{n_{i}^{2} \sin ^{2} \theta_{i}-1}}{\cos \theta_{i}+i n_{i} \sqrt{n_{i}^{2} \sin ^{2} \theta_{i}-1}} \quad r_{\perp}=\frac{n_{i} \cos \theta_{i}-i \sqrt{n_{i}^{2} \sin ^{2} \theta_{i}-1}}{n_{i} \cos \theta_{i}+i \sqrt{n_{i}^{2} \sin ^{2} \theta_{i}-1}}$

Lens-maker's formula:
$\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
Lens Transformation of a Gaussian beam:

$$
\frac{1}{R_{\text {out }}}=\frac{1}{R_{\text {in }}}-\frac{1}{f}
$$

Fabry-Perot Transmission and Reflection (general; with gain or absorption):

$$
\begin{aligned}
& T\left(\theta, G_{0}\right)=\frac{G_{0}\left(1-R_{1}\right)\left(1-R_{2}\right)}{\left(1-G_{0} \sqrt{R_{1} R_{2}}\right)^{2}+4 G_{0} \sqrt{R_{1} R_{2}} \sin ^{2}(\theta)} \\
& R\left(\theta, G_{0}\right)=\frac{\left(\sqrt{R_{1}}-G_{0} \sqrt{R_{2}}\right)^{2}+4 G_{0} \sqrt{R_{1} R_{2}} \sin ^{2}(\theta)}{\left(1-G_{0} \sqrt{R_{1} R_{2}}\right)^{2}+4 G_{0} \sqrt{R_{1} R_{2}} \sin ^{2}(\theta)} \\
& 2 \Delta \theta_{1 / 2}=\frac{1-G_{0} \sqrt{R_{1} R_{2}}}{G_{0}^{1 / 2} \sqrt[4]{R_{1} R_{2}}} \\
& \theta=k d=\frac{\omega n d}{c} \\
& \text { for plane waves }
\end{aligned}
$$

Finesse $_{F}=\frac{\pi \sqrt[4]{R_{1} R_{2}}}{1-\sqrt{R_{1} R_{2}}}=\frac{\Delta \nu_{F S R}}{\Delta v_{1 / 2}}$
Free Spectral Range: $\Delta v_{F S R}=\frac{c}{2 n d}=\frac{1}{\tau_{R T}}$

Photon Lifetime:

$$
\tau_{p}=\frac{\tau_{R T}}{1-R_{1} R_{21}} \approx \frac{1}{2 \pi \Delta v_{1 / 2}}
$$

General Resonance Condition:
roundtrip phase change $=q 2 \pi$

Blackbody Radiation (energy density): $\rho(v) d v=\frac{8 \pi n^{3} h v^{3} d v}{c^{3}} \frac{1}{\mathrm{e}^{h / k T}-1}$

Lorentzian line shape:
e.g. in natural or pressure broadened $g(v)=\frac{\Delta v_{h} / 2 \pi}{\left(v-v_{0}\right)^{2}+\left(\Delta v_{h} / 2\right)^{2}}$

Doppler broadened line shape
$g(v)=\left(\frac{4 \ln 2}{\pi}\right)^{1 / 2} \frac{1}{\Delta v_{D}} \exp \left[(-4 \ln 2)\left(\frac{v-v_{0}}{\Delta v_{D}}\right)^{2}\right]$ with
$\Delta v_{D}=\left(\frac{8 k T \ln 2}{M c^{2}}\right)^{1 / 2} v_{0}$

Formula Sheet (page 2)
PHYC/ECE 464 (Laser Physics I)- University of New Mexico
Instructor: Mansoor Sheik-Bahae

Gain in a two-level system: $\gamma(v)=\sigma(v)\left[N_{2}-\frac{g_{2}}{g_{1}} N_{1}\right] \quad$ Gain cross section: $\sigma(v)=A_{21} \frac{\lambda^{2}}{8 \pi n^{2}} g(v)$
Lineshape Normalization: $\int g(v) d v=1$
Beer's Law: $\frac{1}{I} \frac{d I}{d z}=-\alpha(I)+\gamma(I)$

Gain or absorption saturation in a homogenously-broadened system:
$\gamma(I)=\frac{\gamma_{0}}{1+I / I_{s}} \quad$ or $\quad \alpha(I)=\frac{\alpha_{0}}{1+I / I_{s}}$
$I_{s}(v)=\frac{h v}{\sigma(v) \tau_{2}}$
Einstein's relation: $\quad \frac{A_{21}}{B_{21}}=\frac{8 \pi n^{3} h v^{3}}{c^{3}} \quad g_{2} B_{21}=g_{1} B_{12} \quad \frac{N_{2}}{N_{1}}=\frac{g_{2}}{g_{1}} e^{-\left(E_{2}-E_{1}\right) / k T}$

Degeneracy factors of level i: $g_{i}=2 J_{i}+1 \quad\left(J_{i}\right.$ is total angular momentum quantum number of that level)
Laser amplifier gain: $\ln \frac{G}{G_{0}}+\frac{G-1}{I_{s} / I_{\text {in }}}=0$ where $\mathrm{G}_{0}=\exp \left(\gamma_{0} \mathrm{~L}_{\mathrm{g}}\right)$ is the small-signal gain, $G=I_{\text {oul }} / I_{\text {in }}$
ABCD Matrices $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$
AD-BC=1
$\binom{r_{2}}{r_{2}^{\prime}}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\binom{r_{1}}{r_{1}^{\prime}}$

Free space of length d $\left(\begin{array}{ll}1 & d \\ 0 & 1\end{array}\right)$	Dielectric interface $\left(\right.$ from n_{1} to $\left.\mathrm{n}_{2}\right)$
$\left(\begin{array}{cc}1 & 0 \\ 0 & n_{1} / n_{2}\end{array}\right)$	

ABCD rule for Gaussian beams:

$$
q_{2}=\frac{A q_{1}+B}{C q_{1}+D} \quad \text { where }
$$

$$
q(z)=z+i z_{0}
$$

or
$\frac{1}{q(z)}=\frac{1}{R(z)}-i \frac{\lambda_{0}}{\pi n w(z)^{2}}$

Stability condition: $-1<(\mathrm{A}+\mathrm{D}) / 2<1$

Laser Threshold: $\quad \mathrm{G}_{0}{ }^{2} \mathrm{~S}=1$
$S=$ passive cavity survival factor ($=R_{l} R_{2}$ for a simple two mirror cavity)
Photon Density (Photon Number per Volume) $\frac{N_{p}}{V}=\frac{I}{h v c / n_{g}}$

Convention for refractive and reflective surfaces:

Fundamental Physical Constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Planck constant	h	$6.6260755 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Planck constant	h	$4.1356692 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
Planck hbar	万	$1.0545727 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Planck hbar	\hbar	$6.582121 \times 10^{-16} \mathrm{eV} \cdot \mathrm{s}$
Gravitation constant	G	$6.67259 \times 10^{-11} \mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~s}^{-2}$
Boltzmann constant	k	$1.380658 \times 10^{-23} \quad J / K$
Molar gas constant	R	$8.314510 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
Charge of electron	e	$1.60217733 \times 10^{-19} \mathrm{C}$
Permeability of vacuum	μ_{0}	$4 \pi \times 10^{-7} \quad N / A^{2}$
Permittivity of vacuum	ε_{0}	$8.854187817 \times 10^{-12} \quad \mathrm{~F} / \mathrm{m}$
Mass of electron	m_{e}	$9.1093897 \times 10^{-31} \mathrm{~kg}$
Mass of proton	m_{p}	$1.6726231 \times 10^{-27} \mathrm{~kg}$
Mass of neutron	m_{n}	$1.6749286 \times 10^{-27} \mathrm{~kg}$
Avogadro's number	$N_{\text {A }}$	$6.0221367 \times 10^{23} / \mathrm{mol}$
Stefan-Boltzmann constant	σ	$5.67051 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$
Rydberg constant	$R_{\text {co }}$	$10973731.534 \mathrm{~m}^{-1}$
Bohr magneton	μ_{B}	$9.2740154 \times 10^{-24} J / T$
Bohr radius	a_{0}	$0.529177249 \times 10^{-10} \mathrm{~m}$
Standard atmosphere	atm	101325 Pa

$$
1 \mathrm{G}=10^{-4} \mathrm{~T}, \quad 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}, 1 \text { dyne }=10^{-5} \mathrm{~N}, 1 \mathrm{erg}=10^{-7} \mathrm{~J}
$$

