
Basic Optics Experiments

1 Introduction

This chapter describes 6 experiments in basic optics that can be carried out using the Cornelsen
Student Optics Kit, shown above, and a HeNe laser.

The contents of the kit and a guide to interpreting the setup drawings are included in the fol-
lowing two pages.

Each experiment can be done in only a couple of hours, but you will need to use the rest of the
available class time for analyzing your results, fitting data, etc. That extra time is the best time
to get help from the instructor(s) on error analysis, data fitting, ray tracing, significant figures,
etc.
The experiments are:

• Experiment I

Reflection at a plane mirror

Reflection at a curved mirror

Refraction

• Experiment II - Image formation and ray tracing

Pinhole camera

Converging lenses

Diverging lenses
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• Experiment III

Lens shape and spherical aberration

Dispersion

• Experiment IV

Diffraction and interference; Fourier optics

Resolution

• Experiment V - Magnifiers, Microscopes, and Telescopes

• Experiment VI

Polarization

Chiral molecules and optical activity

2



3



4



5



2 EXPERIMENT I

2.1 Reflection at a Plane Mirror

Arrange the optics lamp, the condenser lens, and the table as shown in the drawing. Put in the
1-slit aperture vertically. Put the ”universal mirror” on the table, flat side toward the light.

Adjust the condenser to obtain a straight beam of light. Measure the angle of incidence and
angle of reflection for six different positions of the mirror. Estimate the uncertainty in your
measurements (and explain in your report how.)

In your report, plot the angle of reflection vs. the angle of incidence on a graph. What law can
you deduce that relates reflection to incidence? How confident are you that this law is correct,
based on your own experiment? Can you be quantitative about your confidence?

2.2 Reflection at a Curved Mirror

Use the three-slit aperture instead of the 1-slit aperture, and arrange the condenser to obtain 3
parallel rays of light. Reflect the rays off a concave mirror, and note the position of the crossing
point. Reflect the rays off a convex mirror, and note the position where the reflected rays appear
to emanate from. Determine the curvature radius of the mirrors.

When a ray reflects off of a curved mirror, it only “sees” a small part of the mirror. That small
part of the mirror may be assumed to be flat - thus, the law of reflection obtained in part 2.1
(angle of incidence = angle of reflection) should be correct. Note, however, that different parallel
rays hit different parts of the mirror, and thus have different angles of incidence.

A convex mirror can be used to focus parallel light rays (such as rays from a distant star.) Use
the law of reflection to predict at what distance from a concave mirror (radius r) parallel rays
will focus (i.e., cross). (You will have to consider only parallel rays that pass close to the center
of curvature, point p in the diagram.) Does this prediction accord with your observations?
Discuss your results and the uncertainties in your measurements.
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2.3 Refraction

Light propagates with speed c in vacuum, but at a slower speed through materials (even air!)
The ratio of the speed of light in vacuum to the speed in a material is the refractive index of the
material, n.

A consequence of the reduced speed of light is that light changes direction at interfaces between
materials with different n. You can (and should) derive the law that describes the change of di-
rection (the ”law of refraction”, or Snell’s law) using a Huygen’s wavelet construction, as shown
here. Wavefront 1 approaches the interface at an angle. The angle the wavefront makes with
the surface (at point P2) is also the angle of incidence of the ray that corresponds to this wave.
(Recall that rays are perpendicular to wavefronts, and that the angle of incidence of a ray is
measured with respect to the surface normal.) At a short time later, the wave at P2 will propa-
gate into the material 2 and be at point Q2. In the meantime, the wave at P1 will have reached
the surface at point Q1. Note that the distances the wave travels in material 2 (P2 to Q2) is
shorter than the distance the wave travels outside (P1 to Q1), because the speed is faster outside.

You should use the diagram below to derive the relationship between θ1 and θ2.
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Experimental:

Use the 1 slit aperture with the condenser and lamp, as in expt. 2.1, and use the semicircular
optical flat as shown. Measure the angles of incidence and refraction for light as it enters the
glass, and for light refracting as it leaves the glass. (You need to make sure that light hits one
(of the two) interfaces at normal incidence, so that no refraction occurs at that interface. Then,
all refraction is caused by the interface that is not normal to the beam propagation.) You should
make measurements at eight different angles for both entering and leaving light beams. Also,
you must determine the uncertainties in your angle measurements, and discuss in your report
how.

Fit your data to the theory (Snell’s law) and determine the index of refraction of the semicir-
cular optical flat. Include error bars on your data points. Do not “connect the dots” between
your data points - any continuous lines or curves on a plot should be “theoretical”, fit curves or
lines. For this experiment, you may choose whether to fit to a plot of θ2 vs. θ1 (requires fitting
to a slightly complicated function) or to fit to a plot of sin θ2 vs. sin θ2. If you choose the latter,
you must consider carefully how the sizes of your error bars may vary: you should discuss this
point in your report.

As a historical note: Isaac Newton observed the refraction of light toward the normal in glass.
He noted that this bending might be caused by an attractive force between light particles and
the glass... similar to how a ball will be deflected by a small, sloping step down. What prediction
would Newton’s theory of refraction make that we now know is wrong?
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3 EXPERIMENT II - Image Formation and Ray Tracing

A ”ray” can be thought of as the path of a narrow beam of light, such as a laser pointer.
Drawing rays can help to analyze the behavior of an optical system: you have already used rays
to analyze mirrors in experiment 1. Rays indicate the direction of propagation of light, and are
always perpendicular to wavefronts.

3.1 Pinhole camera

Arrange the aperture support and the viewing screen on the optical rail as shown in the drawing.
Put the tea light (candle) onto the clamp slider and the slider on the optical rail. Select a pinhole
slide, or use the home-made pinhole.

Light the candle, and completely darken the room. Observe the image of the candle on the
screen. Measure the size of the image for six different positions of the pinhole (screen and can-
dle fixed) and for six different positions of the screen (candle and pinhole fixed.) Be sure to note
your uncertainty in image size, and in your report say how you determined that uncertainty.
Plot the image size vs. position. Compare your results to what you expect from simple ray
tracing.

Try using a larger pinhole. What is the qualitative effect on the image?

3.2 Converging lenses

The most important parameter describing a lens is the focal length, which is the distance beyond
the lens where incident parallel rays will focus to a point. (If the focal length is negative, it
indicates that the lens causes the rays to diverge; they will appear to emanate from a point
”upstream” of the lens.)

1. All rays parallel to the optical axis (an axis through the center of the lens and perpendicular
to it) will cross the optical axis at the focal point.

2. For an ideal, thin lens, rays that go through the center of the lens are undeflected. You
can see this by noting that the surfaces of an ideal, thin lens are parallel and the lens has
no thickness at its center. (Of course, this is an idealization - all real lenses have some
thickness. But even real lenses have parallel surfaces at their centers, and so the deflection
even in a real thinnish lens is negligible.)

The information in 1. and 2. above allow you to graphically determine where a lens will form
an image of an object. When an object is illuminated, it will scatter light in all directions.
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Consider the tip of the arrow object in the figure. Rays of light emanate from the tip in all
directions. We will trace the paths of only a few of those rays: ideal lens theory tells us that
if a few of the rays from the arrow tip cross (i.e. focus at a point), then all the rays (deflected
by the lens) will cross at the same point. So, the trick to ray tracing is to figure out which
rays to trace, and ignore all the other rays... you know they will focus at the same point as
the special rays you choose to trace.

You must choose only rays whose path you know! We know that 1. the ray parallel to the
optical axis is deflected through the focal point, and 2. the ray through the center of the lens
is undeflected. A little quick work with a straightedge shows these rays cross a bit to the right
of the focal point. This is where the image of the tip of the arrow will be. As a matter
of nomenclature, the distance from the lens to the object (op) is called o (the object distance)
and the distance from the lens to the image (os) is called i (the image distance.)

The ray diagram is more than a cartoon: you can use it to derive the lens equation. Consider
the similar triangles in the diagram: pqo ∼ sto, and orf ∼ stf. Use these two pairs of similar
triangles to write down two equations containing o, i, f, and the height of the object (distance
pq) and the height of the image (distance st). (Hint: don’t use the hypotenuses in your equa-
tions!) You can then eliminate the image and object heights to obtain the lens equation. Do
this in your report.

Note that you can quickly calculate (from the similar triangles) the ratio of the height of the
image to the height of the object, in terms of o and i. We call this ratio the magnification.
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Experimental: Use the wooden rack to hold the lamp source. (You need more length for this
experiment than the optical rail has.) Put a slide holder at one end of the optical rail, and place
the f = +50 lens about 15 cm in. Put the viewing screen in a holder and place it at the other
end of the optical rail. Put a slide of an arrow in the slide holder. Place the optical rail on a
block of wood so that light from the lamp passes through the slide and the lens. Adjust the
viewing screen to obtain the best focus of the image of the arrow.

For ten different positions of the lens, measure the object distance, the image distance (for best
focus), and the size of the image. Be sure to note uncertainties in your measurements. (It might
be useful to have each team member independently locate the position of ”best focus”.) Use
your data to check the lens equation,

1

o
+

1

i
=

1

f
(1)

What value of f do you obtain from a best fit of your data? Also, check whether magnification
= i/o, as expected. Is the image right-side up, or inverted?

Observe the text on this page while viewing through the f = +50 lens, and then the f = +100,
f = +200, and f = −100 lenses. In your report, comment on these observations.

3.3 Diverging lenses

Remove the arrow from the slide holder, and place a picture slide in it. Put a diverging lens
(f = −100) in the lens holder. Can you form a focused image on the viewing screen?

Remove the viewing screen and look ”upstream” towards the source. Where does the image
appear to be located? In your report, construct a ray diagram showing the object, the diverging
lens, and the image. As with converging lenses, the ray through the center of the lens is unde-
flected; a ray parallel to the optical axis is bent by the lens so that it appears to come from a
point a distance f ”upstream” of the lens.

Images formed from light rays that pass through the image location are called real images;
images formed from light rays that only appear to emanate from the image location are called
virtual.
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4 EXPERIMENT III

4.1 Lens shape and Spherical Aberration

Lenses are able to bring light rays to a focus because the rays are refracted at the lens surfaces.
The easiest (non-flat) shape to grind is a spherical section. Thus, most lenses are made in this
shape.

Consider a ray approaching a plano-convex lens, parallel to the optical axis, as shown in the
diagram. With the assumption that the ray is close to the axis (compared with the lens radius, r),
you can use Snell’s law to determine f , the focal length. (Hints: use the fact that α+ θ1 = θ2.
Also, for small angles, sin θ ≈ θ.) Do this in your report. You will observe from your
calculation that all parallel rays cross the optical axis at the same point f , provided they are
close to the optical axis.

Next, consider rays that are not close to the optical axis. Where do you calculate that they will
cross the optical axis? In other words, derive f as a function of r/R, r being the distance from
the optical axis of the parallel ray, and R being the radius of the lens.

The fact that f , the focal length, varies for rays far from the optical axis is called spherical
aberration.

Experimental: Align the HeNe laser so the beam moves straight down the center of the wooden
board, just grazing the surface. (You may have to shim the board or the laser with some paper.)
Place the semicircular optical flat on a piece of paper as shown, and tape it down at the top
and bottom edges. Place the optical flat in the center of beam, with the flat surface upstream
and perpendicular to the beam. (When adding a centered optical component, you should make
sure the beam still goes on the same path, downstream of the new component, as it did before
the component was added.) Mark the left edge of the paper; then mark the point where the
beam enters the ”lens” and mark the path of the beam as it leaves the lens for about 10 cm.
Next, slide the paper and lens down four millimeters, keeping the flat side perpendicular to the
beam. Mark the entry point and the exit path again. Repeat. At the end of your experiment,
you should have a paper that looks like the Figure on the following page.

Use the rays near the axis to estimate the focal length of the ”lens”, and calculate the index
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of refraction of the lens glass. Plot the expression you derived for f vs r/R along with your
measured data points. Is there agreement?

4.2 Dispersion

Another source of aberration in optical systems is dispersion. Dispersion refers to the fact that
the index of refraction, n, varies with the frequency of light.

Qualitatively, this phenomenon can be understood by analogy to forced harmonic oscillators.
Materials (such as glass) contain atoms with orbital electrons that will be driven to and fro by
the oscillating electric field from an impinging light beam. Because accelerating charges radiate,
the electrons will radiate electromagnetic energy. The combination of the impinging field and
the reradiated fields give rise to the light beam that propagates through the material.

The electrons in the material act like forced oscillators under the influence of the impinging field.
What is their behavior?

An oscillator always moves at the frequency at which it is driven; its amplitude is highest if it
is driven at resonance. More importantly for this discussion, there is a phase difference between
the driving force and the response. If the driving force is at a low frequency (compared with
resonance), the phase difference is very small. The oscillator tracks the driving force. If the
driving force is at a very high frequency, the oscillator will be 180o out of phase. At resonance,
the oscillator will lag behind the driving force by 90o. It turns out that summing the re-emitted
waves over the plane adds an additional phase lag of 90o (the interested student is referred to
the Feynman Lectures on Physics.) Thus, below resonance, the re-emitted wave lags by
less than 180o. When added to the original wave, this produces a retardation of the phase of
the wave. Above resonance, the re-emitted wave lags by more than 180o. When added
to the original wave, this produces an apparent advance of the phase of the wave.

13



Thus, the speed with which the combined (impinging plus reradiating) wave moves through the
material depends on the phase of the reradiated waves which depends on the frequency. (It
should be stated that by “speed”, we are referring to how fast wave fronts move through the
material. This is called the ”phase velocity”.) Note that, above resonance, the phase of the
wave moves more quickly! The light ”moves” faster than c, and the index of refraction is less
than 1! In fact, at x-ray frequencies, most materials do have n < 1, and it is possible to get
”total external reflection” of x-rays off of water or other materials.

Experimental:
Set up the lamp, the condenser, a converging lens and a prism as shown in the figure.

Observe the effect of the prism on white light. Next, insert color filters into the beam path and
observe the refraction of each color separately. Carefully measure the angles of the prism and
the refracted beams to determine the index of refraction of the prism glass for each color. Is
there a ”resonant” frequency for the electrons in the glass? Can you estimate what it is?

What do you expect the effect of the variation of n with frequency will be on focusing by a
convex lens? Can you observe the aberration (chromatic aberration)?

Does the f = +100 lens improve the experiment? If so, how?
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5 EXPERIMENT IV

5.1 Diffraction and Interference; Fourier Optics

Though ray tracing treats light as if it were made up of particles, propagating light is best de-
scribed as a wave. (Absorption and emission of light reveal its quantum-mechanical particle-like
nature ... not propagation.)

One of the most straightforward observations that demonstrate the wave nature of light is
the behavior of a grating. A grating is simply a plate with a spatially periodic variation in
transmissivity (an amplitude grating) or a variation in optical pathlength (a phase grating
- the variation in path length causes the light waves to have spatially varying phase after passing
through the grating.

Far from a grating, the light that has passed through will create an interference pattern. We
use the principle of Huygen’s wavelets to analyze the pattern: each point on the exit side of the
grating acts as a source of light, as shown in the figure. We sum up all these sources (keeping
track of phase differences) to find the light intensity at a point far downstream. The best way
to keep track of phase differences is to use complex notation. The electric field of a light wave
traveling in the +x direction can be written as

E(x, t) = E0 cos(ωt− kx+ ϕ), (2)

where k = 2π/λ and ϕ is the phase of the wave. It is generally convenient to write that

E(x, t) = Re
[
ei(ωt−kx+ϕ)

]
, (3)
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using the Euler identity that eiθ = cos θ + i sin θ.

Far from the grating (and near to the optical axis), all the Huygen’s wavelets will have about
the same amplitude (or, more precisely, they will have the same attenuation from their initial
amplitudes at the grating.) At the exit side of the grating, the amplitudes (or phases) of the
wavelets depend on the position on the grating. In other words,

E0 = E0(z) (4)

Note that E0 is a real function for an amplitude grating, but is a complex function for a phase
grating.

Far downstream, at an angle α the Huygen’s wavelets all add together. As can be seen in the
drawing, wavelets from lower down on the grating have a longer path to travel (for positive α),
so we need to take this into account. The extra path length is z sinα ≈ zα for small α. So x,
the distance the wavelet must travel, is

x = x0 + zα (5)

The extra path length will cause the wavelets from lower down on the grating to have a phase
lag.

E(t, z) = Re[E0(z)e
i(ωt−kx0+kzα+ϕ)] = Re[E0(z)e

i(ωt−kx0+ϕ)eikzα] (6)

The total field at this point on the screen is obtained by summing over the entire grating, i.e.
integrating over z.

E(t, kα) =

∫
E0(z)e

i(ωt−kx0+ϕ)eikzαdz = ei(ωt−kx0+ϕ)
∫
E0(z)e

ikzαdz (7)

(It is implied that only the real part of the complex result is kept, so we can dispense with the
”Re” notation.) The term outside the integral is just a ”phase factor” (it has unit magnitude).
When we measure (or see) light, we detect a time average of the square of the electric field, and
the exponential prefactor vanishes.

The more mathematically inclined will recognize the integral as a Fourier transform of the source
distribution, E0(z). The far-field angular distribution of light is the Fourier transform of the
source distribution.

From elementary physics, you may remember that interference maxima from an amplitude
grating (with narrow slits) appear when mλ = d sinα ≈ dα . You can show that this is a special
case of the general expression above. The Fourier transform of
Is just:
Notice that the diffraction peaks occur when kα = 2πm/d, i.e. when mλ = dα (For this exam-
ple, d = 10µm).

Because different colors have different wavelengths, a diffraction grating can be used to separate
colors and to determine the spectrum of light from a source. With an infinite number of slits,
the grating would have infinite resolving power: no matter how close in wavelength two colors
were, they would still form clearly separated lines from the grating. With a finite number of
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slits, however, the maxima are spread out a bit, and it becomes impossible to separate two
closely spaced wavelengths.

The width of the maxima can be estimated by determining the separation (in angle) from the
top of the peak to the nearest minimum. That minimum occurs when the phase shift from one
slit to the next is δφ = 2π/N , where N is the number of slits. We wish to know how much of
a change in wavelength will put the new diffraction maximum right in this nearest minimum:
this is called the resolution of the grating. Since the phase shift at a given slit is

φ =
2π

λ
d sin θ (8)

δφ =
2π

λ
d cos θδθ =

2π

N
(9)

δθ is the angular shift to the nearby minimum.
(Note: we do not need to use the small angle approximation here.)

The diffraction maximum is at d sin θ = mλ. We use this equation to find out how a small
change in λ affects θ: d cos θδθ = mδλ. Combining this with the previous equations, we find:

λ

δλ
= mN, (10)

which is the chromatic resolving power of the grating.

Experimental:

Arrange the lamp, adjustable slit, lens, grating, and screen on the optical rail:
Observe the appearance of the interference fringes, and record the positions of the different col-
ors. Are both 1st order fringes of the same intensity? If not, what could explain the difference?
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What is the purpose of the slit and the lens in this experiment?

Calculate the resolving power of the grating. How many slits does the light actually hit? If
you can get hold of a photodiode, measure the light intensity as a function of theta after the
grating, for both the ”white” light lamp, and with a color filter in place. Find the approximate
transmittance of the filter as a function of wavelength.

Remove the lamp, slit, and lens, and shine a HeNe laser on the grating. What is the resulting
pattern now? Measure the positions of the diffracted beams, and calculate the grating spacing.
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5.2 Resolution

If we place a lens downstream of the diffraction grating, we can make an image of it. You have
seen that the diffraction grating will spread the light out into different beams, called diffraction
orders. Consider a couple of diffraction orders created with the HeNe laser and a square wave
grating, as shown in the diagram, collected by a lens and focused. If the lens is far from the
grating, the diffraction orders will cross (i.e. focus) at the focal point of the lens, which is exactly
where we expect to form an image of the grating. Even if the lens is closer to the grating, the
point where the diffraction orders cross is always where we expect to form the image of the grat-
ing. This is simply because all the diffraction orders come from the same place (the illuminated
spot on the grating) - they are just like rays emanating from the object.

A lens forms an image of a grating by capturing and focusing (crossing) the diffraction orders.

Closeup view of the focus (i.e. crossing) of the zero and 1st order diffraction beams:
How do the diffraction orders combine to form an image? They interfere! From the diagram,
you can see that the three beams (the central, zero order diffraction beam, and the two 1st order
beams) will combine to give a spatially varying intensity. At points labeled “a”, the beams all
have their peaks and troughs aligned (in phase), and so the intensity there will be quite high.
At points labeled “b”, the first order beams are out of phase with the zero order, so there is
cancellation and the intensity is very low. The variation in intensity across the interference
pattern is the image of the grating! Notice that the image from these three beams won’t
look much like the grating: it’s sinusoidal, not square. But if we add in the higher diffraction
orders, the image will be a better and better representation of the original square wave grating.
We are simply adding the higher spatial frequency Fourier components to the image. How
many orders would you have to collect to get a perfect square wave image?
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Suppose your lens is too small (in diameter) to collect and focus even the first order diffraction
spots. In that case, there is only one beam going through the lens, and there is nothing to
interfere with it. There will be no spatial variation (smaller than the spot size) in the image
at all... no indication that the object is even a grating at all. We say that the optical system
cannot resolve the grating.

Experimental:
To demonstrate the loss of resolution, you can take the 100 grating, shine the HeNe through it,
and use an f = +50 lens to focus (combine) the spots. To see the image of the grating, you will
need to make the image distance very large. You can project the image onto a piece of paper
taped to a far wall.

When you can see the image of the grating, block all of the diffraction orders except for the
central order. Can you still see the grating image?

One measure of the resolution of an optical system is the size of the smallest grating that can
be imaged. If the lens captures more diffraction spots (”orders”), then it can make a better
image. A lens must capture at least the zero and first order diffraction spots to make any image
of the grating.

For a given grating and wavelength of illumination, calculate the size of the lens (in terms of
sin θ, the sine of the half angle subtended by the lens at the object) needed to form an image.
Are your measurements of lens size in accord with your calculation?

The combination n sin θ is called the ”numerical aperture” of a lens. (n is the index of refraction
of the intervening medium, air in this case.) The expression for minimum lens size you just
calculated can be inverted to give the resolution of a lens as a function of the numerical aperture.
Do this in your report.
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6 EXPERIMENT V - Magnifiers Microscopes, and Telescopes

A magnifying glass is useful for examining small objects. The proper use of a magnifying glass
is to hold it close (a few cm) to your eye, and then bring the sample up behind it.

Experimental:
Observe the effects of the magnifying lenses of different focal lengths (f = +50,+100). Is the
image from a magnifying glass real or virtual? Is the image distance larger or smaller than the
focal length?

The human eye cannot comfortably focus closer than about 20 cm. However, with a magnifying
glass, you can bring objects much closer than that. Use a ray diagram to explain the operation
of the magnifying glass. Does a magnifying glass increase the angular (or apparent) size of the
object? How would you define magnification for this optical arrangement?

A microscope uses a short focal length lens close to the object of study to produce an enlarged,
intermediate image. The intermediate image is then viewed with a magnifier (called the eyepiece)
to gain further magnification. Set up a microscope as shown. (Note: you can omit the f = −100
mm lens; simply adjust the ocular (f = +200) appropriately.) Draw a ray diagram to explain
image formation in the microscope. Adjust the lens and sample positions to as to produce the
largest magnification you can. What is the magnification of the ”objective” lens (the lens closest
to the specimen?) What is the magnification of the eyepiece or ocular? Replace the f = +50
mm objective with an f = +100 objective. Where must you place the +100 lens to get a good,
focused image? How does the magnification of the objective relate to the focal length?

Figure 1: The microscope

The telescope. It is not useful to talk about the size of objects that are at infinity - rather, the
angle the object subtends is what we think of as ”size”. (The moon, for example, is about a
half a degree ”wide”.) Draw a ray diagram that shows how a telescope increases the apparent
angle of objects at infinity. What is the angular magnification of the Cornelsen telescope?

Figure 2: The telescope
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7 EXPERIMENT VI

7.1 Polarization

Light is electric and magnetic fields, which are vector quantities, oscillating and perpendicular
to the direction of propagation. The interaction of light with materials is usually dominated by
the electric field interaction. Consequently, the direction in which the electric field oscillates is
called the direction of polarization.

Materials can be made that absorb light with a preferred polarization. The perpendicular
polarization can pass through. These materials are called polarizers. (If an electric field is at an
angle to the ”pass” orientation, the vector component along that orientation is passed.)
Experimental:
Set up the optical rail as shown:

Replace the screen with a photodiode light detector. Measure the intensity of light passing
through two polarizers, as you rotate the second polarizer. As a function of θ, the angle of the
second polarizer, what should be the light intensity? Fit your data to theory. (You may need to
consider the possibility that the polarizers are not ”perfect”: in other words, they may absorb
some light, even if the light is polarized in the ”pass” orientation, and they may pass some light
that is polarized in the blocking orientation. Include these possibilities in your data analysis!)

Polarization is particularly useful in the study of materials. Some materials are anisotropic, and
will refract light differently depending on the polarization direction. Arrange the elements on
the optical rail as shown below, omitting the polarizing filter for now. Adjust the lens so that
the cross is projected clearly onto the screen. Turn the limespar (calcite) slowly until two crosses
appear side by side on the screen. Put the polarizing filter in, and observe the appearance of
the crosses as the filter is rotated. In your report, describe your observations and explain.
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7.2 Chirality and Polarization

Molecules that cannot be superimposed on their mirror images are called chiral. Molecules that
look like screws (like DNA) are obviously chiral: there is a real difference between a left-handed
and a right-handed screw, as anyone who has tried to loosen a reverse-threaded screw soon learns!

Any molecule with a carbon atom attached to four different substituents is chiral. Most biologi-
cal molecules are chiral. Chiral molecules can rotate the plane of polarization of plane polarized
light. (They will also preferentially absorb either left- or right-circularly polarized light.)

In this experiment, you will use the polarizers and the photodiode to detect the rotation of the
plane of polarization by glucose solutions of several different concentrations. (The instructor
will provide d-glucose solutions at 0, 20, 40, and 60% wt/vol.) Set up the optical rail as shown,
but with a photodiode where the screen is. Measure the intensity as a function of analyzer angle.

Plot your results (include uncertainties!) Fit your data to find the angle at which the trans-
mitted light is at a maximum intensity. (The best procedure is to fit to a sinusoid with an
adjustable phase parameter. You could also fit the peak region to a quadratic function.)

Plot the angle through which the polarized light is rotated vs. the concentration of glucose.
What functional form should you fit this result to?

In your report, show the chemical structure of d-glucose and indicate all the chiral centers.
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