
significant behavior and has been extensively
studied and applied in many scientific areas. The
general framework presented here can be further
investigated using some books listed in Further
Reading below.

See also

Fiber and Guided Wave Optics: Nonlinear Optics.
Nonlinear Optics, Applications: Phase Matching. Non-
linear Optics, Basics: x(3)–Third-Harmonic Generation.
Nonlinear Sources: Harmonic Generation in Gases.
Optical Parametric Devices: Optical Parametric
Oscillators (Continuous Wave); Optical Parametric
Oscillators (Pulsed).

Further Reading

Bloembergen N (1996) Nonlinear Optics. Singapore: World
Scientific Pub Co.

Bloom DM and Bjorklund GC (1977) Conjugate wave-
front generation and image reconstruction by four-wave
mixing. Applied Physics Letters 31: 592–594.

Born M and Wolf E (1999) Principles of Optics. Cam-
bridge, UK: Cambridge University Press.

Butcher PN and Cotter D (1991) The Elements of
Nonlinear Optics. Cambridge, UK: Cambridge Univer-
sity Press.

Eaton DF (1991) Nonlinear optical materials. Science 253:
281–287.

Fisher RA (1984) Optical Phase Conjugation. San Diego,
CA: Academic.

Flytzanis C (1975) Theory of nonlinear optical suscepti-
bilities. In: Rabin H and Tang CL (eds) Quantum
Electronics, vol. 1, pp. 9–207. New York: Academic
Press.

Hellwarth RW (1977) Generation of time-reversed wave
fronts by nonlinear refraction. Journal of the Optical
Society of America 67: 1–3.

Jackson JD (1998) Classical Electrodynamics. New York:
Wiley.

Marburger JH (1975) Self-focusing: Theory. Progress in
Quantum Electronics 4: 35–110.

Mittra R and Habashy TM (1984) Theory of wave-front-
distortion correction by phase conjugation. Journal of
the Optical Society of America A 1: 1103–1109.

Rockwell DA (1988) A review of phase-conjugate solid-
state lasers. IEEE Journal of Quantum Electronics 24:
1124–1140.

Shen YR (2002) The Principles of Nonlinear Optics.
New York: Wiley.

Yariv A (1977) Compensation for atmospheric degradation
of optical beam transmission. Optical Communication
21: 49–50.

Yariv A (1989) Quantum Electronics, 3rd edn. New York:
Wiley.

Yariv A and Pepper DM (1977) Amplified reflection, phase
conjugation, and oscillation in degenerate four-wave
mixing. Optical Letters 1: 16–18.

Zel’dovich BYa, Pilipetsky NF and Shkunov VV (1985)
Principles of Phase Conjugation. Berlin: Springer-
Verlag.

Kramers–Krönig Relations in Nonlinear Optics

M Sheik-Bahae, The University of New Mexico,
Albuquerque, NM, USA

q 2005, Elsevier Ltd. All Rights Reserved.

Since their introduction nearly 75 years ago, the
Kramers–Krönig (KK) dispersion relations have
been widely appreciated and applied in the analysis
of linear optical systems. Because they are a
consequence of strict causality, the KK relations
apply not only to optical systems, but also to any
linear, causal system such as electrical networks and
particle scattering. In this article, we review the
formulation and application of these relations in
nonlinear optical systems. Simple logical arguments
are used to derive dispersion relations that relate
the nonlinear absorption coefficient to the nonlinear
refraction coefficient. More general formalisms
are then derived that apply to all nonlinear

susceptibilities including the harmonic generating
cases. Examples of recent successful application
of these dispersion relations in analyzing various
nonlinear materials will be presented.

The mathematical formalism of the KK dispersion
relations in nonlinear optics was studied in the
formative days of the field. The great usefulness of
these relations was appreciated only recently, how-
ever, when they were used to derive the dispersion of
the optical Kerr effect in solids from the correspond-
ing nonlinear absorption coefficients, including two-
photon absorption.

Before examining the details of KK relations in
nonlinear optical systems, it is instructive to revisit
the linear dispersion relations and their derivation
based on the logic of causality. We will begin this task
by introducing the definition of the linear as well as
nonlinear susceptibilities x (n). In most nonlinear
optics texts, the total material polarization (P) that
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drives the wave equation for the electric field (E) is
expressed as

PiðtÞ¼10

ð1

21
Rð1Þ

ij ðt2t1ÞEjðt1Þdt1þ10

ð1

21
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21

£Rð2Þ
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21
Rð3Þ

ijklðt2t1;t2t2;t2t3Þ

�Ejðt1ÞEkðt2ÞElðt3Þdt1 dt2 dt3þ ··· ½1�

where R (n) is defined as the nth-order, time-depen-
dent response function or time-dependent suscepti-
bility. The subscripts are polarization indices
indicating, in general, the tensor nature of the
interactions. The summation over the various indices
j, k, l, … is implied for the various tensor elements of
R (n). Upon Fourier transformation, we obtain:
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where d is the Dirac delta-function. Here the E(v) are
Fourier transforms of the corresponding electric field.
The nth-order susceptibility is defined as the Fourier
transform of the nth-order response function:

x
ðnÞ
ijk…nðv1;v2;…;vmÞ¼

ðþ1

21
dt1

ðþ1

21
dt2···

ðþ1

21

�dtnRðnÞ
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iðv1t1þv2t2þ···þvmtmÞ
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For simplicity, we drop the polarization indices
i, j, … , and thus ignore the tensor properties of x (n)

as well as the vector nature of the electric fields.
Let us for the moment concentrate on the linear

polarization alone and derive the linear KK relations
for the first-order susceptibility x (1)(v). For this, we
rewrite eqn [3] for n ¼ 1:

xð1ÞðvÞ ¼
ð1

21
Rð1ÞðtÞe2 ivt dt ½4�

(As defined above, x (1)(v) and R (1)(t) are not a strict
Fourier transform pair because of a missing factor of
2p.) Causality means that the effect cannot precede

the cause. This can be restated mathematically as:

Rð1ÞðtÞ ¼ Rð1ÞðtÞQðtÞ ½5�

i.e., the response to an impulse at t ¼ 0 must be zero
for t , 0. Here Q(t) is the Heaviside step function
defined as Q(t) ¼ 1 for t . 0 and QðtÞ ¼ 0 for t , 0.
Upon Fourier transforming this equation, the product
in the time domain becomes a convolution integral in
frequency space

xð1ÞðvÞ ¼ xð1ÞðvÞ
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v0 2 v
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which is the KK relation for the linear optical
susceptibility. The symbol ‘ stands for the Cauchy
principal value of the integral. The KK relation is thus
a restatement of the causality condition [5] in the
frequency domain. Taking the real part we have,

Re{xð1ÞðvÞ} ¼
1

p
‘
ð1

21

Im{xð1Þðv0Þ}

v0 2 v
dv0 ½7�

Taking the imaginary part of eqn [6] leads to a similar
relation relating the imaginary part to an integral
involving the real part. It is conventional to write the
optical dispersion relations in terms of the more
familiar quantities of refractive index, nðvÞ, and
absorption coefficient, aðvÞ. For lxð1Þl ,, 1 then
n 2 1 ¼ Re{xð1Þ}=2 and a ¼ vIm{xð1Þ}=c, and eqn [7]
is transformed into

nðvÞ2 1 ¼
c

p
‘
ð1

0

aðv0Þ

v02 2 v2
dv0 ½8�

where we additionally used the reality conditions of
nðvÞ ¼ nð2vÞ, and aðvÞ ¼ að2vÞ to change the
lower integral limit to 0. More rigorous analysis
shows that eqn [8] is general and valid for any value
of lxð1Þl. Although the KK dispersion relations and
the extent of their applications in linear optics are
well understood, some confusion sometimes exists
about their applications to nonlinear optics. Caus-
ality clearly holds for both linear and nonlinear
systems. The question is: what form do the resulting
dispersion relations take in a nonlinear system? The
linear Kramers–Krönig relations were derived from
linear system theory, so it would appear to be
impossible to apply the same logic to a nonlinear
system. The key insight is that one can linearize the
system. This is illustrated in Figure 1 where a linear
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(and of course, causal) optical material is trans-
formed into a ‘new’ linear system that now contains
the material and an external perturbation denoted by
j. Although we are interested in perturbations of an
optical nature, this formalism is general under any
type of perturbation. It is important to appreciate the
fact that our new system is causal even in the
presence of the perturbation. This allows us to write
down a modified form of the Kramers–Krönig
relation linking the index of refraction to the
absorption:

½nðvÞ þ Dnðv; zÞ�2 1

¼
c

p
‘
ð1

0

aðv0Þ þ Daðv0; zÞ

v02 2 v2
dv0 ½9�

which, after subtracting the linear relation between n
and a leaves a relation between the changes in index
and absorption:

Dnðv; zÞ ¼
c

p
‘
ð1

0

Daðv0; zÞ

v02 2 v2
dv0 ½10�

where z denotes a general perturbation. An equival-
ent relation also exists whereby the change in
absorption coefficient can be calculated from the
change in the refractive index. It is essential that the
perturbation be independent of frequency of obser-
vation, v0, in the integral (i.e., the excitation z must
be held constant as v0 is varied).

Equation [10] has been used to determine refrac-
tive changes due to ‘real’ excitations such as thermal
and free-carrier nonlinearities in semiconductors. In
those cases, z denotes either DT (change of tempera-
ture) or DN (change of free-carrier density), respect-
ively. In the former case, one calculates the refractive
index change resulting from a thermally excited
electron–hole plasma and the temperature shift of
the band edge. For cases where an electron–hole
plasma is injected (e.g., optically), the change of

absorption gives the plasma contribution to the
refractive index. In this case, the z parameter in
eqn [10] is taken as the change in plasma density
regardless of the mechanism of generation or the
optical frequency.

Let us now extend this formalism to the case where
the perturbation is virtual, occurring at an excitation
frequency V that is below any material resonance. To
the lowest order in the excitation irradiance IV, we
write

Daðv; zÞ ¼ Daðv;VÞ ¼ 2a2ðv;VÞIV ½11�

and

Dnðv; zÞ ¼ Dnðv;VÞ ¼ 2n2ðv;VÞIV ½12�

where n2 and a2 are the nonlinear refractive index
and absorption coefficients of the material, respect-
ively. By definition, these coefficients are related to the
third-order nonlinear susceptibility xð3Þðv1;v2;v3Þ

via (see Nonlinear Optics, Basics: Nomenclature
and Units)

n2ðv;VÞ ¼
3

410n0ðvÞn0ðVÞc
Re{xð3Þðv;2V;VÞ} ½13�

and

a2ðv;VÞ¼
3va

210n0ðvÞn0ðVÞc2
Im{xð3Þðv;2V;VÞ} ½14�

We can therefore write the dispersion relations
between a2 and n2:

n2ðv;VÞ¼
c

p
‘
ð1

0

a2ðv
0;VÞ

v022V2
dv0 ½15�

Note that even when the degenerate n2ðvÞ¼n2ðv;vÞ

is desired (at a given v), the dispersion relation
requires that we should know the nondegenerate
absorption spectrum a2ðv

0;vÞ at all frequencies v0.
Let us pause here and discuss some physical

mechanisms that can be involved for a given system
of interest. Consider a material characterized by an
optical resonance occurring at, say v0 (i.e., a
degenerate two-level system). For a solid, this
resonance can be regarded as that of the fundamental
energy gap; v0 ¼ vg ¼ Eg=" in a two-band system.
Now, let us examine how the presence of an optical
excitation at V , v0 can alter the absorption
spectrum (at a variable probe v0). In the quantum
mechanical picture, this gives rise to a ‘new’ material
whose perturbed wave functions are ‘dressed’ by the
intensity and frequency of the applied optical field.

Figure 1 (a) A causal linear system obeying KK relations. (b)

The system in (a) when externally perturbed by j. The dotted box

now represents our new linear causal system whose altered x (1)

obeys the KK relations.
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The lowest-order correction to the absorption is
given by a2ðv

0;VÞ which involves three major
physical processes. Recalling that V , v0, these
processes include (1) two-photon absorption (2PA)
when v0 þV! v0 and (2) Raman-induced absorp-
tion when v0 2V! v0, both implying an absorption
of a photon at the probe frequency v0 ði:e:;a2 . 0Þ.
The third process can be identified as resulting from
the blue-shift (for V , v0) of the resonance (known
as the quadratic optical Stark effect) caused by the
excitation field. For our two-level system, the latter
results in a decrease followed by an increase in
absorption in the vicinity of v0. An example of the
overall absorption changes due to such processes is
shown in Figure 2 where a2ðv

0;VÞ is qualitatively
plotted for a degenerate two-level system. We should
note that the relative magnitude of each contribution
as well as the width and shape of the resonances are
chosen arbitrarily for the purpose of illustration.
Using the KK relation in eqn [15], we can now arrive
at the nonlinear index coefficient n2ðv;VÞ. The result
of this transformation is also given in Figure 2. The
above simple example elucidates the key concepts
involving the relationship between nonlinear absorp-
tion and refraction in materials for third-order
processes. These concepts, when applied more
rigorously to semiconductors, have been successful
in predicting the sign, magnitude, and dispersion of
n2 due to the anharmonic motion of bound electrons.
This will be briefly discussed later. Returning to the
mathematical foundation of KK relations, we use

eqns [13] and [14] to write eqn [15] in terms of the
nonlinear susceptibility x (3):

Re{xð3Þðv1;v2;2v2Þ}

¼
1

p
‘
ð1

21

Im{xð3Þðv0;v2;v2Þ}

v0 2 v1

dv0 ½16�

The above dispersion relation for x (3) was obtained
using the physical and intuitive arguments that
followed the linearization scheme depicted in
Figure 1. General dispersion relations can be
formulated following a mathematical procedure
that is similar to the derivation of the linear KK
relations. In this case we apply the causality
condition directly to the nth-order nonlinear
response R (n). For example, without loss of general-
ity, we can write

RðnÞðt1; t2;…; tnÞ ¼ RðnÞðt1; t2;…; tnÞQðtjÞ ½17�

and then calculate the Fourier transform of this
equation. Here j can apply to any one of the indices
1;2; :…; n. Following the same procedure as for a
linear response, we obtain

xðnÞðv1;v2;…;vj;…;vnÞ

¼
2i

p
‘
ð1

21

xðnÞðv1;v2;…;v0;…;vnÞ

vj 2 v0
dv0 ½18�

Figure 2 Upper trace: the nonlinear absorption coefficient in a fictitious ‘degenerate’ two-level system. Lower trace: the resulting

nonlinear refractive index obtained using the KK relations. The insets show the three possible physical mechanisms involved.
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By separating the real and imaginary parts of this
equation, we get the generalized Kramers–Krönig
relation pairs for a nondegenerate, nth-order non-
linear susceptibility:

Re{xðnÞðv1;v2;…;vj;…;vnÞ}

¼
1

p
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21
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v0 2 vj
dv0 ½19�

and

Im{xðnÞðv1;v2;…;vj;…;vnÞ}

¼2
1

p
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21

Re{xðnÞðv1;v2;…;v0;…;vnÞ}

v02vj

dv0 ½20�

In particular, for x (3) processes having v1 ¼va;v2vb,
and 3 b, this becomes identical to eqn [16].

Note that in describing the nonlinear suscepti-
bilities, no special attention was given to the
harmonic generating susceptibility xðNÞðNvÞ ;
xðNÞðv;v;…vÞ, i.e., the susceptibility generating
the Nth harmonic at Nv. It turns out that in
addition to the KK relations given by eqns [19] and
[20], the real and imaginary parts of xðNÞðNvÞ can
also be related in different sets of dispersion
integrals that involve only the degenerate forms of
the susceptibilities. A more general yet simple
analysis gives the most general form of KK relations
for any type of xðnÞ:

xðnÞðv1þp1v;v2þp2v;…;vmþpmvÞ

¼
1

ip
‘
ð1

21

xðnÞðv1þp1V;v2þp2V;…;vmþpmVÞ

V2v
dV

½21�

for all p1;p2;…;pm$0: Setting v1¼v2¼ ···¼vm;0,
and p1¼p2¼ ···¼pm¼1 in eqn [21] yields an
interesting form of the KK relations for the Nth-
harmonic susceptibilities:

Re{xðNÞðNvÞ}¼
1

p
‘
ð1

21

Im{xðNÞðNv0Þ}

v02v
dv0 ½22�

These dispersion relations have allowed calculations
of xð2Þð2vÞ and xð3Þð3vÞ in semiconductors using full
band structures.

At the beginning of this article, it was noted that
all the KK relations for nonlinear optics were known
in the early days of the field. Their application in

unifying nonlinear absorption (in particular two-
photon absorption) and the optical Kerr effect (n2) in
solids came only much later. More recent work
demonstrated that the KK relations are a powerful
analytical tool in nonlinear optics. Following the
picture of a degenerate two-level system shown in
Figure 2, a simple two-band model has been used to
calculate the nonlinear absorption coefficient,
a2ðv1;v2Þ; resulting from three mechanisms: 2PA,
the Raman absorption process, and the ac Stark
effect. The optical Kerr coefficient n2ðv1;v2Þ was
then calculated using eqn [15]. Of particular
practical interest is the degenerate case
ðv1 ¼ v2 ¼ vÞ, from which the 2PA coefficient
bðvÞ ¼ a2ðv;vÞ can be extracted. Figure 3 depicts
the calculated dispersion of n2 and b as a function of
"v=Eg where Eg is the bandgap energy of the solid.
The dispersion of n2 and its sign reversal shown in
Figure 3 has been observed experimentally in many
optical solids.

Finally, let us discuss a related implication of
causality in nonlinear optics. The KK dispersion
relations are traditionally derived in terms of internal
material parameters such as susceptibility, absorption
coefficient, and refractive index. Similar to the case of
electrical circuits, one can obtain dispersion relations
that apply to an external transfer function of the
system that relates an input signal to an output signal.
In this case, the dispersion of the transfer function
includes system structure as well as the intrinsic
dispersion of the material. As an optical (and linear)
example, consider a Fabry–Perot etalon. The optical
transmission of this system has well-known spectral

Figure 3 The two-photon absorption coefficient in semiconduc-

tors (b) calculated for a two-band model. The resultant nonlinear

refractive index (n2) obtained using a KK transformation of the

calculated nondegenerate nonlinear absorption coefficient

includes all major mechanisms.
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features that are primarily caused by structural
dispersion (i.e., interference) in addition to the
intrinsic dispersion of the material. Causality still
demands that the transmitted signal has a phase
variation whose value and dispersion can be deter-
mined using a KK relation linking the real and
imaginary parts of the transmission coefficient. In
other words, the KK relations provide a spectral
correlation between the real and imaginary com-
ponents of the transfer function which in turn may
translate to a spectral correlation between the phase
and amplitude of the transmitted signal. However, the
variations in phase do not necessarily imply the
presence of a varying index of refraction, nor does an
amplitude variation suggest the existence of material
absorption (dissipation). Ultimately, this implies that
any mechanism causing a variation in amplitude
(including reflection, scattering, or absorption) must
be accompanied by a phase variation. (One should note
that the reverse of the previous statement is not
necessarily true; i.e., a variation in phase does not
have to be accompanied by an amplitude modulation.)

In nonlinear optics with the ‘black box’ approach
of Figure 1, the optical perturbation j (with freq-
uency V) can render an amplitude variation in
the probe (at v) using various frequency mixing
schemes in a noncentrosymmetric material (i.e., with
nonzero x (2)). For instance, the probe at v can be
depleted by nonlinear conversion to vsum ¼ vþV

via sum-frequency generation involving xð2Þðv;VÞ

and/or to vdiff ¼ v2V via difference-frequency
generation involving xð2Þðv;2VÞ. Such a conversion
(or depletion) should be accompanied by a phase
variation according to the KK dispersion relations.
This type of nonlinear phase modulation is known as
a x(2):x(2) cascaded nonlinearity. Such cascaded
processes are routinely (and more simply) analyzed
with Maxwell’s equations governing the propagation
of beams in a second-order nonlinear material.
The KK relations, however, provide an interesting
physical perspective of the process. We find that
cascaded second-order nonlinearities are yet another
manifestation of causality in nonlinear optics.

List of Units and Nomenclature

a linear absorption coefficient
a2 nonlinear absorption coefficient
b two-photon absorption coefficient

x (n) nth-order nonlinear optical
susceptibility

n linear refractive index
n2 nonlinear refractive index

coefficient, coefficient of optical
Kerr effect

Q(t) step function
‘ principal value
2PA two-photon absorption
KK relations Kramers–Krönig relations

See also

Materials for Nonlinear Optics: Liquid Crystals for NLO.
Nonlinear Optics, Basics: Cascading; Nomenclature
and Units.
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