NONLINEAR OPTICS (PHYC/ECE 568)

Spring 2022 - Instructor: M. Sheik-Bahae University of New Mexico Homework #4, Due Monday, March 21

Problem 1. *SHG in KDP:*

a. Calculate the type-I phase matching angle for SHG in KDP using 1.06 µm output of a Nd:YAG laser.

b. For a beam radius $w_0=500 \mu m$, calculate the aperture length defined as $l_a = \sqrt{\pi w_0}/\rho$ where ρ is the Poynting vector walk-off angle. Obtain the aperture length for $w_0=15 \mu m$ and discuss the role of additional limitations that may be imposed due to diffraction of the beam.

Problem 2. SHG Bandwidth:

a. Calculate the bandwidth $\Delta \omega$ associated with a phase-matched SHG process in terms of the group velocities $v_g(\omega_l)$ and $v_g(2\omega_l)$. In the low-depletion approximation, this corresponds to the width of the $Sinc^2$ function which is taken to be $\delta(\Delta kL)=2\pi$ with *L* denoting the length of the nonlinear crystal. *Hint: Use the first-order term in the Taylor series expansion of* $\Delta k(\omega)$.

b. Discuss how your results in (a) explains the limitation on the SHG-efficiency when ultrashort laser pulses are used.

Problem 3. What about the fundamental wave?

Consider the case of a phase-matchable SHG process; but instead of being concerned about the second-harmonic beam (at 2ω), we would like to determine the fate of the transmitted fundamental field at ω (see also problem 2.20 in Boyd, 3rd ed.).

(a) Start with the coupled amplitude equations (i.e. Eqns. 2.7.10-11 in Boyd). Eliminate A_2 to obtain the following nonlinear differential equation for A_1 :

$$\frac{d^2 A_1}{dz^2} + i\Delta k \frac{dA_1}{dz} + \Gamma^2 A_1 \left[2 |A_1 / A_1(0)|^2 - 1 \right] = 0$$

where $\Gamma^2 = 4d^2\omega_1^2 |A_1(0)|^2 / (c^2n_1n_2)$.

(b) Now make the *low-depletion* approximation by setting $|A_1|^2 = |A_1(0)|^2$ in the above equation. Solve for A_1 for a propagation length L. (Hint: You need a second initial condition that is obtained from $E_2(0)=0$).

(c) Taking $A_1 = |A_1|e^{i\phi}$, plot $|A_1|/|A_1(0)|$ and ϕ versus ΔkL (from - 4π to 4π) for $\Gamma^2 L^2 = 0.1$, 0.2, and 0.4. Discuss your results (i.e. sign reversal vs. Δk , etc.)

The above process (i.e. the intensity-dependent phase variation of the fundamental wave) has been termed $\chi^{(2)}$: $\chi^{(2)}$ cascading nonlinearity. It mimics a third order $\chi^{(3)}$ process where $\chi^{(3)}_{eff} \propto \chi^{(2)}(\omega; 2\omega, -\omega) \chi^{(2)}(2\omega; \omega, \omega)$ is effectively a cascade of two second order effects. The cascading nonlinearity has generated some interest for applications requiring large $\chi^{(3)}$ effects (i.e. optical switching, spatial solitons, and, in general, processes requiring an n₂-type nonlinearity). See Sheik-Bahae and Hasselbeck (OSA Handbook, Chapter 17).

Problem 4. Cascading for THG (Third-Harmonic Generation) in KDP.

Actually, cascading 2nd order effects to obtain an effective third-order effect is not a new concept. In fact the most efficient way to generate the third-harmonic (3ω) of a laser beam is to first produce 2ω (in an SHG process) and then use SFG to generate $3\omega=2\omega+\omega$. The phase matching requirement, however, dictates that this *cascading* be performed in two separate crystals with proper orientation. In Problem 1, you calculated the phase matching angle (ϕ_m) for type-I SHG in KDP. Now calculate ϕ_m for a second crystal to produce the third-harmonic of a YAG laser. (Note: No rotation of polarization is used between the two crystals).

Sellmeier Equation			$n^2 = A + B/(\lambda^2 - C) + D\lambda^2/(\lambda^2 - E)$, λ in μm				
Sellmeier Coefficients			KDP	KD*P	ADP	CDA	CD*A
А	n _o		2.2576	2.2409	2.3041	2.4204	2.4082
	n _e		2.1295	2.1260	2.1643	2.3503	2.3458
В	B n _o		0.0101	0.0097	0.0111	0.0163	0.0156
n _e		0.0097	0.0086	0.0097	0.0156	0.0151	
С	n _o		0.0142	0.0156	0.0133	0.0180	0.0191
	n _e		0.0014	0.0120	0.0129	0.0168	0.0168
D	n _o		1.7623	2.2470	15.1086	1.4033	2.2122
	n _e		0.7580	0.7844	5.8057	0.6853	0.6518
E	n _o		57.8984	126.9205	400.0000	57.8239	126.8709
	n _e		127.0535	123.4032	400.0000	127.2700	127.3309
Typical values	λ=1064 nm	n _a n _e	1.4942 1.4603	1.4931 1.4583	1.5071 1.4685	1.5515 1.5356	1.5499 1.5341
	λ=532 nm	n _o n _e	1.5129 1.4709	1.5074 1.4683	1.5280 1.4819	1.5732 1.5516	1.5692 1.5496
	λ=355 nm	n _o n _e	1.5317 1.4863	1.5257 1.4833	1.5487 1.4994	1.6026 1.5788	1.5974 1.5759

For frequency-doubling (SHG) and -tripling (THG) of Nd:YAG laser at 1064 nm, both type I and type II phase-matchings can be employed for KDP and KD'P. In the high power case, the KD'P crystals are often used with standard size of 12x12x25 mm³. For frequency-quadrupling (4HG, output at 266 nm) of Nd:YAG laser, KDP crystal is normally recommended.