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Problem 1. SHG in KDP:  

a. Calculate the type-I phase matching angle for SHG in KDP using 1.06 m output of a Nd:YAG laser.  

 

b. For a beam radius w0=500 m, calculate the aperture length defined as la= w0 /  where  is the Poynting 

vector walk-off angle.  Obtain the aperture length for w0=15 m and discuss the role of additional limitations 

that may be imposed due to diffraction of the beam.  

 

 

Problem 2.  SHG Bandwidth:   

a. Calculate the bandwidth  associated with a phase-matched  SHG process in terms of the group velocities 

vg(1) and vg(21).  In the low-depletion approximation, this corresponds to the width of the Sinc2 function 

which is taken to be (kL)=2  with L denoting the length of the nonlinear crystal.                                                             

Hint: Use the first-order term in the Taylor series expansion of k(). 

 

b. Discuss how your results in (a) explains the limitation on the SHG-efficiency when ultrashort laser pulses 

are used.                                                                                                    

  

 

Problem 3.   What about the fundamental wave?    
Consider the case of  a phase-matchable SHG process; but instead of being concerned about the second-

harmonic beam (at 2), we would like to determine the fate of the transmitted fundamental field at  (see 

also problem 2.20 in Boyd, 3rd ed.).  

(a) Start with the coupled amplitude equations (i.e. Eqns. 2.7.10-11 in Boyd). Eliminate A2 to obtain the 

following nonlinear differential equation for A1: 
2

2 21 1
1 1 12

2 | / (0) | 1 0
d A dA

i k A A A
d z dz

          

where 2=4d21
2|A1(0)|2/(c2n1n2). 

 

(b) Now make the  low-depletion  approximation by setting |A1|2=|A1(0)|2 in the above equation.  Solve for 

A1 for a propagation length L.  (Hint: You need a second initial condition that is obtained from  E2(0)=0). 

 

(c) Taking A1=|A1|ei, plot |A1|/|A1(0)| and  versus kL (from - 4 to 4) for  2L2=0.1, 0.2, and 0.4.  Discuss 

your results (i.e. sign reversal vs. k, etc.)   

 
The above process (i.e. the  intensity-dependent phase variation of the fundamental wave) has been termed (2):(2) cascading 

nonlinearity.  It mimics a third order (3) process where (3)
eff(2)(;2,-)(2)(2;,) is effectively a cascade of two second order 

effects.  The cascading nonlinearity has generated some interest for applications requiring large (3) effects (i.e. optical switching, 

spatial solitons, and, in general, processes requiring an n2-type nonlinearity).  See  Sheik-Bahae and Hasselbeck (OSA Handbook, 

Chapter 17). 

 

  



Problem 4.   Cascading for THG (Third-Harmonic Generation) in KDP.  
Actually, cascading 2nd order effects to obtain an effective third-order effect is not a new concept.  In fact 

the most efficient way to generate the third-harmonic (3) of a laser beam is to first produce 2 (in an SHG 

process) and then use SFG to generate 3=2+. The phase matching requirement, however, dictates that 

this cascading  be performed in two separate crystals with proper orientation.  In Problem 1,  you calculated 

the phase matching angle (m) for type-I SHG in KDP. Now calculate m for a second crystal to produce the 

third-harmonic of a YAG laser.  (Note: No rotation of polarization is used between the two crystals). 
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