NONLINEAR OPTICS (PHYC/ECE 568)

Spring 2022 - Instructor: M. Sheik-Bahae
University of New Mexico

Homework \#3, Due: Monday March 7

Problem 1. Infrared Up-Conversion

Estimate the efficiency of the upconversion of $10 \mu \mathrm{~m}$ infrared radiation using sum frequency generation. The pump laser has $\lambda=532 \mathrm{~nm}$, with a power of 10 W . Use 2 cm long Proustite (use $\mathrm{d}_{\text {eff }}=\mathrm{d}_{22}$) crystal under perfect phase-matching and optimum focusing where $\mathrm{L}=2 \mathrm{Z}_{0}\left(\mathrm{Z}_{0}\right.$ is the Rayleigh range of the focused laser beam).

Problem 2.

(a) Show that $d_{\text {eff }}$, as defined by $P_{3}=4 d_{\text {eff }} E_{1} E_{2}$, is related to the d tensor via:

$$
d_{e f f}=\hat{e}_{3} \bullet d: \hat{e}_{1} \hat{e}_{2}
$$

where $\hat{e}_{j}(j=1,2,3)$ is the unit vector associated with $\mathrm{E}_{1}, \mathrm{E}_{2}$, and P_{3}.
(b) For a given geometry, $\mathrm{d}_{\text {eff }}$ is usually calculated in terms of $d_{i l}$'s and the angles ϕ and θ as described in the figure below. Here x, y and z (or 1,2 and 3) are the crystal axis and X, Y, and Z (laboratory frame) are optical propagation axis (e.g. $\mathrm{k}_{2}\left\|\mathrm{k}_{1}\right\| \mathrm{Z}$). Note: Y is in xy-plane (thus normal to z - or optics axis) and X is on zZ plane.

(i) Derive expressions for $\mathrm{d}_{\text {eff }}$ for a class 3 m crystal (e.g. LiNbO_{3}) where $\hat{e}_{1}=\hat{e}_{2}=Y$ (ordinary), and $\hat{e}_{3}=X$ (extra-ordinary). (This is known as type-I condition).
(ii) Repeat the above calculation for type-II condition where $\hat{e}_{1}=Y$ (ordinary), $\hat{e}_{2}=X$ and $\hat{e}_{3}=X$ (extra-ordinary).
(iii) Find a geometry (i.e. θ and ϕ) that accesses the largest d_{il} element in LiNbO_{3}. (see data provided here).
(iv) Find the phase matching angle for SHG generation at λ (fundamental) $=1.15 \mu \mathrm{~m}$ for the part (i) and (ii). Discuss the phase matching situation for case (iii)

Problem 3. Poynting Vector Walk-off:
We know, from linear optics, that the e- and o-rays in a birefringent crystal walk-off from each other (i.e. double-refraction) resulting from the fact that k_{e} and k_{o} are not parallel. Known as Poynting vector walk-off, this is essentially the angle (ρ) between E and D vectors for the e-ray where $\mathrm{D}=\epsilon: E$.

In the harmonic generation applications, such as SHG, this imposes a serious restriction on the useful length of the nonlinear crystal.
a. Assuming a uniaxial crystal, calculate the walk-off angle ρ between e- and o-ray Poynting vectors. Show that

$$
\tan \rho=-\frac{1}{n_{e}(\theta)} \frac{d n_{e}(\theta)}{d \theta}
$$

b. Show that for type-I phase matching SHG $(\mathrm{o}+\mathrm{o} \rightarrow \mathrm{e})$

$$
\rho \approx \tan \rho=\frac{n_{o}^{2}(\omega)}{2}\left[\frac{1}{\tilde{n}_{e}^{2}(2 \omega)}-\frac{1}{n_{o}^{2}(2 \omega)}\right] \sin \left(2 \theta_{m}\right)
$$

LiNbO_{3} Properties

$\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & d_{31} & -d_{22} \\ -d_{22} & d_{22} & 0 & d_{31} & 0 & 0 \\ d_{31} & d_{31} & d_{33} & 0 & 0 & 0\end{array}\right]$ class 3m crystal

Nonlinear Optical Coefficients of LiNbO_{3} at $1.06 \boldsymbol{\mu} \mathrm{~m}$

$\mathrm{d}_{22} / 1 \mathrm{~d}_{36}{ }^{\mathrm{KDP}} 1$	6.5
$\mathrm{~d}_{31} / 1 \mathrm{~d}_{36}{ }^{\mathrm{KDP}} 1$	-12.3
$\mathrm{~d}_{33} / 1 \mathrm{~d}_{36}{ }^{\mathrm{KDP}} 1$	-86

$\mathrm{d}_{36}(\mathrm{KDP}) .=0.4 \mathrm{pm} / \mathrm{V}$

Refractive Indices at $20^{\circ} \mathrm{C}$

Wavelength, $\mu \mathrm{m}$	n_{o}	n_{e}
0.43584	2.39276	2.29278
0.54608	2.31657	2.22816
0.63282	2.28647	2.20240
1.1523	2.2273	2.1515
3.3913	2.1451	2.0822

