NONLINEAR OPTICS (PHYC/ECE 568) Fall 2017 - Instructor: M. Sheik-Bahae University of New Mexico Homework #7, Due Monday, Nov. 13

1. Thermal n₂^{eff}

(a) Calculate the nonlocal n_2^{eff} (defined as $\langle \Delta n \rangle / I_0$) due to laser heating of a liquid characterized by its absorption coefficient α (cm⁻¹), density ρ (gr./cm³), heat capacity $C_v(J/K/gr.)$ and thermo-optic coefficient dn/dT (K⁻¹). The laser intensity is $I(t)=I_0f(t/t_p)$ where I_0 is the peak intensity and $f(t/t_p)$ denotes the normalized temporal profile of the pulse. Thermal diffusion can be ignored in this problem if we assume that the diffusion time is much longer than t_p while being much shorter than the inter-pulse spacing. The latter requirement is for avoiding heat accumulation from pulse to pulse.

(b) Evaluate n_2^{eff} for liquid CS₂ and a pulsed CO₂ laser (λ =10.6 µm) having a square temporal profile (t_p =100 ns). The CS₂ parameters are α =0.2 cm⁻¹, ρC_v =1.3 J/K/cm³, and dn/dT=-8x10⁻⁴ K⁻¹.

(c) If the sound velocity (v_s) in CS₂ is 1.5×10^5 cm/sec., what is the largest laser spot-size (w_0) for which the n_2^{eff} obtained in (b) is valid? What happens as the spot size becomes larger than this value?

2. n2^{eff} due to photo-generation of charge-carriers in semiconductors:

(a) Calculate the n_2^{eff} due to resonant interband charge-carrier generation in semiconductors. The known parameters for the semiconductor are: the band-gap energy E_g , the electron effective mass m^* (for both conduction and valence bands), the valence-to-conduction band absorption coefficient α , and the carrier recombination time τ . This requires a calculation of the electronic density change ΔN (in both bands) due to linear absorption followed by the calculation of the resultant index change Δn from both bands using a harmonic classical electron oscillator (CEO) model. In this simple approach, the electrons in the valence band are considered bound with a resonant frequency $\omega_0=\omega_g=E_g/\hbar$, while the conduction electrons are considered free ($\omega_0=0$). Ignore damping in the CEO models. The governing equation for ΔN is:

$$\frac{d\Delta N}{dt} = \frac{\alpha I(t)}{\hbar \omega} - \frac{\Delta N}{\tau}$$

where $\hbar\omega$ is the incident photon energy and I(t)=I₀f(t/t_p) is the instantaneous laser intensity. Consider two extreme cases of t_p>> τ and t_p<< τ . (You may assume a rectangular pulse).

(b) Evaluate n_2^{eff} (cm/W) and the effective $\chi^{(3)}$ (esu or m^2/V^2) for GaAs with $E_g=1.4 \text{ eV}$, $m^*=0.1 \text{ m}_0$, $\alpha=100 \text{ cm}^{-1}$, $\tau=1 \text{ ns}$. The laser wavelength is $\lambda=900 \text{ nm}$ and $t_p=10 \text{ ps}$.

(c) Do you expect an (nonlinear) absorptive component $\Delta \alpha$ associated with the above index change Δn ? Explain (briefly).

Problem 3. Consider an *isotropic* nonlinear material (e.g. silica glass). We are concerned here with the self-phase modulation case where $\chi^{(3)}_{ijkl}(\omega;\omega,\omega,-\omega)$ is involved.

(a) Show that $\chi^{(3)}_{xxxx} = \chi^{(3)}_{xxyy} + \chi^{(3)}_{xyyx} + \chi^{(3)}_{xyxy}$

(b) Let the incident field be represented by $\vec{E} = E_0 e^{-i\omega t} (\hat{x} + e^{i\phi} \hat{y}) / \sqrt{2}$ where ϕ is the phase difference between x and y components. Note that $\phi = m\pi$ and $\phi = (m+1/2)\pi$ describe the linear and circular polarization receptively. Let us now define an effective nonlinear susceptibility through: $\vec{P}^{(3)}(\omega) = 3\varepsilon_0 \chi_{eff}^{(3)} |E_{\alpha}|^2 \vec{E}$

(i) Find $\chi^{(3)}_{eff}$ as a function of the $\chi^{(3)}$ tensor elements and the phase angle ϕ . Note, this corresponds to conditions where P is in phase as well as along E. Can we define such a χ_{eff} for all values of ϕ (i.e. elliptical polarization)? *Read Sec. 4.2 (Boyd, 3rd. ed.). You may start with Eq. 4.2.7*

(ii) Find the circular/linear dichroism defined as $\eta = \chi^{(3)}_{eff}(\phi = \pi/2)/\chi^{(3)}_{eff}(\phi = 0)$

NLO HW# 7 Solution

$$\begin{aligned} problem (T) = Q \\ P_{2}^{chf} = \frac{\langle Dn \rangle}{I_{0}} = \langle \frac{\partial n}{\partial T} \cdot DT \rangle_{T_{0}} = \frac{\partial n}{\partial T} \cdot \frac{\langle DT \rangle}{I_{0}} \\ \frac{dT}{dT} = \frac{1}{pC_{v}} d I(t) \rightarrow DT(t) = \frac{d}{pC_{v}} \int_{-\infty}^{+\infty} I(t') dt' \\ = \frac{dT_{v}}{pC_{v}} \int_{-\infty}^{+\infty} P(\frac{t'}{4p}) dt' \\ = \frac{dT_{v}}{pC_{v}} \int_{-\infty}^{+\infty} P(\frac{t'}{4p}) dt' \\ -br a square puble: DT(t) = \frac{dI_{0}t}{pC_{v}} \\ = \frac{dT_{v}}{pC_{v}} \int_{-\infty}^{+\infty} P(\frac{t'}{4p}) dt' \\ = \frac{dT_{v}}{pC_{v}} \int_{-\infty}^{+\infty} P(\frac{t}{4p}) dt' \\ -br a square puble: DT(t) = \frac{dI_{0}t}{pC_{v}} \\ = \frac{dT_{v}}{pC_{v}} \int_{-\infty}^{+\infty} P(\frac{t}{4p}) dt' \\ = \frac{dT_{v}}{pC_{v}} \int_{-\infty}^{+\infty} P(\frac{t}{4p}) dt \\ -br a square puble: shape hety (i.e. I(t) = I_{v}f(t)) \\ H_{v} averaging is performed as \\ \langle DT \rangle = \int_{0}^{+\infty} DT(t)f(t) dt \\ = \frac{dI_{v}}{pC_{v}} \int_{-\infty}^{+\infty} \frac{f(t)}{pC_{v}} dt \int_{-\infty}^{+\infty} \frac{f(t)}{pC_{v}} dt \\ \int_{0}^{+\infty} \frac{f(t)}{pC_{v}} dt \\ = \frac{dI_{v}}{pC_{v}} \int_{-\infty}^{+\infty} \frac{f(t)}{pC_{v}} dt \\ = \frac{t}{pC_{v}} \int_{-\infty}^{+\infty} \frac{f(t)}{pC_{v}} dt \\ = \frac{f(t)}{pC_{v}} \int_{-\infty}^{+\infty} \frac{f(t)}{pC_{v}} dt \\ = \frac{f(t)}{pC_{v}} \int_{-\infty}^{+\infty} \frac{f(t)}{pC_{v}} dt \\ = \frac{t}{pC_{v}} \int_{-\infty}^{+\infty} \frac{f(t)}{pC_{v}} dt \\ = \frac{f(t)}{pC_{v}} \int_{-\infty}^{+\infty} \frac{f(t)}$$

F

problem ()-(b) $n_{2}^{\text{eff}} = \frac{0.2 \times 100 \times 10^{-9}}{1.3 \times 2} \times -8 \times 10^{-4} \approx -6 \times 10^{-12} \text{ Cm}_{W}^{2}$ Problem ()-(c) -the rise time of the nonfocal thermal lens is the accoustic transit time across the beam:

Tac $= \frac{w_0}{v_s}$ \Rightarrow For n_2 eff derived in part "a" to be valid, $\pm p$? Tac $\Rightarrow w_0 < v_s \pm p = 1.5 \times 10^{-2}$ cm = 150 µm for w_0 ? 150 µm $- \phi = n_2^{\text{eff}}$ reduces.

problem (2) - (3)

$$= n = 1 + \frac{2\pi (\frac{2}{N} \times N_{D})}{\omega_{g}^{2} - \omega^{2}} + \frac{2\pi (\frac{2}{N} \times N_{P})}{-\omega^{2}}$$
Initially, all the electrons are bound. (in the valence bond)
and Np (density of electron in Conduction boad) = 0
offer excitation of DN, n can be obtained by
replacing N_D = DN_D - DN and N_P = 0 DN!
Thus,

$$Dn = \frac{2\pi e^{2} DN}{m^{*}} \left(\frac{-1}{\omega_{g}^{2} - \omega^{2}} + \frac{4\pi}{-\omega^{2}} \right) = -\frac{2\pi e^{2} DN}{m^{*} \omega^{2}} \cdot \frac{\omega_{g}^{2}}{\omega_{g}^{2} - \omega^{2}} + \frac{4\pi e^{2}}{-\omega^{2}} = \frac{-2\pi e^{2} DN}{m^{*} \omega^{2}} \cdot \frac{\omega_{g}^{2}}{\omega_{g}^{2} - \omega^{2}} + \frac{1}{\omega^{2}} = \frac{2\pi e^{2} DN}{m^{*} \omega^{2}} \cdot \frac{\omega_{g}^{2}}{\omega_{g}^{2} - \omega^{2}} + \frac{1}{\omega^{2}} = \frac{2\pi e^{2} DN}{m^{*} \omega^{2}} \cdot \frac{\omega_{g}^{2}}{\omega_{g}^{2} - \omega^{2}} + \frac{1}{\omega^{2}} = \frac{2\pi e^{2} DN}{m^{*} \omega^{2}} \cdot \frac{\omega_{g}^{2}}{\omega_{g}^{2} - \omega^{2}} + \frac{1}{\omega^{2}} = \frac{2\pi e^{2} DN}{m^{*} \omega^{2}} \cdot \frac{\omega_{g}^{2}}{\omega_{g}^{2} - \omega^{2}} + \frac{1}{\omega^{2}} = \frac{2\pi e^{2} DN}{m^{*} \omega^{2}} \cdot \frac{\omega_{g}^{2}}{\omega_{g}^{2} - \omega^{2}} + \frac{1}{\omega^{2}} = \frac{2\pi e^{2} DN}{m^{*} \omega^{2}} \cdot \frac{\omega_{g}^{2}}{\omega_{g}^{2} - \omega^{2}} + \frac{1}{\omega^{2}} = \frac{2\pi e^{2} DN}{m^{*} \omega^{2}} \cdot \frac{\omega_{g}^{2}}{\omega_{g}^{2} - \omega^{2}} + \frac{1}{\omega^{2}} = \frac{2\pi e^{2} DN}{m^{*} \omega^{2}} \cdot \frac{\omega_{g}^{2}}{\omega_{g}^{2} - \omega^{2}} + \frac{1}{\omega^{2}} = \frac{2\pi e^{2} DN}{m^{*} \omega^{2}} \cdot \frac{\omega_{g}^{2}}{\omega_{g}^{2} - \omega^{2}} + \frac{1}{\omega^{2}} = \frac{1}{\omega^{2}} + \frac{1}$$

problem 2-0 * Cone 2 : dp << C $- \left(\begin{array}{c} t \\ f(\frac{t}{tp}) e \\ \end{array} \right) e \\ \end{array} dt' = \int \left(\begin{array}{c} t' \\ \frac{t}{tp} \\ \end{array} \right) dt'.$ - Dimilar to problem (1); $\langle DN \rangle = \frac{\chi I_o t p}{2 t \omega}$. Thus, $n_2^{\text{eff}} = \frac{\langle Dn \rangle}{T_n} = \frac{K \langle DN \rangle}{T_n}$ Cone (I) -o $n_2^{\text{eff}} = -\frac{2\pi e^2}{m^*} \frac{\alpha \alpha}{\pi \omega} \frac{1}{\omega^2} \left(\frac{\omega_g}{\omega_g^2 - \omega^2} \right)$ Case $2 \rightarrow \eta_2^{cff} = -\frac{2\pi e^2}{m^*} \frac{\alpha t_p}{2t_w} \cdot \frac{1}{\omega^2} \left(\frac{\omega \tilde{g}}{\omega_g^2 - \omega^2} \right)$ problem 2-(b) -> tp(=10 ps) << c (=1 us) => Cone (2) applies! -> Note :

4

 $n_2^{\text{eff}}(\mathsf{mks}) = -\frac{\frac{2}{\varepsilon_{xtp}}}{4\mathsf{m}^{\star}\mathsf{hav}} \cdot \frac{1}{\omega^2} \cdot \left(\frac{\omega_g^2}{\omega_g^2 - \omega^2}\right)$

problem (2)-(c)

-Dobuiously, due to kramers-kroning relations, (principle of -Casuality), any changing in index Dn is associated (accompanied) by a change of absorption (at resonance). -For the above problem, this change of absorption is due by absorption

مرادی استان است

problem (3)
$$f$$

- for isotropic materials, p should be the same,
regardless of the axes orientations; thus,
 $\frac{X_{XXXX} + X_{XXYY} + X_{YYY} + X_{YYYX}}{2} = X_{XXXX}$
or $\frac{X_{XXXX} = X_{XXYY} + X_{YYY} + X_{XYYX}}{2}$
 $problem (3) - (5)$
 $problem (4) - (5)$
 $problem (4)$

-Thus,

$$X_{eff}^{(3)} = \int X_{xxxx}$$
; for LP
 $(X_{xxxx} - X_{xyyx})$; for CP

- Circular Dichroism: $M = \frac{\chi_{eff}^{(3)} (\text{circular})}{\chi_{eff}^{(3)} (\text{linear})} = 1 - \frac{\chi_{xyyx}}{\chi_{xxxx}}$

For Kleinman System:
$$n = \frac{2}{3}$$

X