NONLINEAR OPTICS (PHYC/ECE 568) Spring 2022 - Instructor: M. Sheik-Bahae University of New Mexico Homework #1, Due: Thu. Feb. 3

Problem 1. Nonlinear optical measurements show that an optical glass (SiO₂) has $\tilde{n}_2 = 1.3 \times 10^{-13}$ esu at $\lambda = 850$ nm. The linear refractive index n₀=1.5

- (a) What is n_2 in cm²/W and m²/W? (see Appendix C for unit conversions).
- (b) What is $\chi^{(3)}$ in SI units?
- (c) Estimate the peak index change (Δn) induced by a modelocked laser operating at 500 mW (average power), 20 fs laser pulsewith and 100 MHz repletion rate. The laser (Gaussian profile) is focused to a spot size of w₀=10 µm.

Problem 2. Extreme nonlinear optics occurs when the incident optical field approaches the characteristic atomic field $E_{at} = e/(4\pi\epsilon_0)a_0^2$ where a_0 is the Bohr radius (read section 1.1 in Boyd). In this regime, we can no longer describe the nonlinearity by nonlinear susceptibilities as the process becomes non-perturbative. At such high electric fields, the atom simply ionizes.

Calculate E_{at} and its corresponding irradiance I_{at} . What is the required pulse energy to achieve this irradiance for a 30 fs laser pulse focused to 20 µm spot size?

Problem 3. Pockel's Effect: A 2^{nd} order nonlinear crystal with a known $\chi^{(2)}$, refractive index n_0 and a thickness L is used as an electro-optic modulator as shown below. Here a DC voltage (V_{dc}) is applied across two transverse electrodes (separated by d).

Ignoring anisotropy and tensor properties, show that the phase of the transmitted electric field will be modulated according to:

$$\Delta \phi(V) = \kappa V_{dc}$$

- (a) What is κ (use SI notation)?
- (b) For $\chi^{(2)} \approx 1 \text{ pm/V}$, find the required V_{dc} to achieve $\Delta \phi = \pi$ for L=1 cm, $\lambda = 500 \text{ nm}$. Assume d=10 mm, n₀=1.5.

Problem 4. EFISH: Electric-Field Induced Second Harmonic

Consider a centrosymmetric and isotropic material (e.g. glass) for which $\chi^{(3)}(\omega_4; \omega_3, \omega_2, \omega_1)$ is known. In an experimental arrangement (as shown in the Figure) this material is sandwiched between two parallel electrodes while an intense laser beam is propagating parallel to the electrodes.

(a) By applying a large d.c. voltage (V), some second harmonic generation (2ω) is observed. Explain how this is possible. Note (show that) this corresponds to $\chi^{(3)}(2\omega; \omega, \omega, 0)$

(b) Assuming $\chi^{(3)} \approx 10^{-22} \text{ m}^2/\text{V}^2$, estimate the required voltage to produce a $\chi^{(2)}_{\text{eff}}$ equal to that of KDP ($\chi^{(2)} \approx 1 \text{ pm/V}$). The electrode spacing d=10 mm.

(c) In the small signal regime (i.e. when the incident light intensity is very low), show that the phase of the transmitted beam is modulated by the applied voltage. Explain.