NONLINEAR OPTICS (PHYC/ECE 568)

Spring 2022 - Instructor: M. Sheik-Bahae
University of New Mexico
Homework \#1, Due: Thu. Feb. 3
Problem 1. Nonlinear optical measurements show that an optical glass $\left(\mathrm{SiO}_{2}\right)$ has $\tilde{n}_{2}=1.3 \times 10^{-13}$ esu at $\lambda=850 \mathrm{~nm}$. The linear refractive index $n_{0}=1.5$
(a) What is n_{2} in $\mathrm{cm}^{2} / \mathrm{W}$ and $\mathrm{m}^{2} / \mathrm{W}$? (see Appendix C for unit conversions).
(b) What is $\chi^{(3)}$ in SI units?
(c) Estimate the peak index change $(\Delta \mathrm{n})$ induced by a modelocked laser operating at 500 mW (average power), 20 fs laser pulsewith and 100 MHz repletion rate. The laser (Gaussian profile) is focused to a spot size of $w_{0}=10 \mu \mathrm{~m}$.

Problem 2. Extreme nonlinear optics occurs when the incident optical field approaches the characteristic atomic field $E_{a t}=e /\left(4 \pi \varepsilon_{0}\right) a_{0}{ }^{2}$ where a_{0} is the Bohr radius (read section 1.1 in Boyd). In this regime, we can no longer describe the nonlinearity by nonlinear susceptibilities as the process becomes non-perturbative. At such high electric fields, the atom simply ionizes.

Calculate E_{at} and its corresponding irradiance $I_{a t}$. What is the required pulse energy to achieve this irradiance for a 30 fs laser pulse focused to $20 \mu \mathrm{~m}$ spot size?

Problem 3. Pockel's Effect: A $2^{\text {nd }}$ order nonlinear crystal with a known $\chi^{(2)}$, refractive index n_{0} and a thickness L is used as an electro-optic modulator as shown below. Here a DC voltage $\left(\mathrm{V}_{\mathrm{dc}}\right)$ is applied across two transverse electrodes (separated by d).
Ignoring anisotropy and tensor properties, show that the phase of the transmitted electric field will be modulated according to:
$\Delta \phi(V)=\kappa V_{d c}$
(a) What is κ (use SI notation)?
(b) For $\chi^{(2)} \approx 1 \mathrm{pm} / \mathrm{V}$, find the required V_{dc} to achieve $\Delta \phi=\pi$ for $\mathrm{L}=1 \mathrm{~cm}, \lambda=500 \mathrm{~nm}$. Assume $\mathrm{d}=10 \mathrm{~mm}, \mathrm{n}_{0}=1.5$.

Problem 4. EFISH: Electric-Field Induced Second Harmonic

Consider a centrosymmetric and isotropic material (e.g. glass) for which $\chi^{(3)}\left(\omega_{4} ; \omega_{3}, \omega_{2}, \omega_{1}\right)$ is known. In an experimental arrangement (as shown in the Figure) this material is sandwiched between two parallel electrodes while an intense laser beam is propagating parallel to the electrodes.

(a) By applying a large d.c. voltage (V), so $\overline{\overline{m e}}$ second harmonic generation (2ω) is observed. Explain how this is possible. Note (show that) this corresponds to $\chi^{(3)}(2 \omega ; \omega, \omega, 0)$
(b) Assuming $\chi^{(3)} \approx 10^{-22} \mathrm{~m}^{2} / \mathrm{V}^{2}$, estimate the required voltage to produce a $\chi^{(2)}$ eff equal to that of $\operatorname{KDP}\left(\chi^{(2)} \approx 1 \mathrm{pm} / \mathrm{V}\right)$. The electrode spacing $\mathrm{d}=10 \mathrm{~mm}$.
(c) In the small signal regime (i.e. when the incident light intensity is very low), show that the phase of the transmitted beam is modulated by the applied voltage. Explain.

