Nonlinear Optics (PHYC/ECE 568) Spring 2007

Midterm Exam I, Open Text-Book, Time: 1.5 hour

NAME		
	last	first

Grade			

Please staple and return this page with your exam.

1. SHG Bandwidth (a HW problem):

a. Calculate the bandwidth $\Delta \omega$ associated with a phase-matched SHG process in terms of the group velocities $v_g(\omega_l)$ and $v_g(2\omega_l)$. Bandwidth is defined as the frequency spread around ω_l , for which $\Delta k(\omega_l \pm \Delta \omega/2)L = 2\pi$. with L denoting the length of the nonlinear crystal. Hint: Use the first-order term in the Taylor series expansion of $\Delta k(\omega)$. (15 pts.)

b. Discuss how your results in (a) explains the limitation on the SHG-efficiency when ultrashort laser pulses are used.

(5 pts.)

Note group velocity $v_g = (dk/d\omega)^{-1}$

2. SHG Acceptance Angle:

a. In a similar manner as in problem 1, calculate the acceptance angle ($\Delta \theta$) for a type-I phase matched SHG process. Acceptance angle is defined as angular spread around θ_m , for which $\Delta k(\theta_m \pm \Delta \theta/2)L = 2\pi$. Assume negative birefringence in a uniaxial crystal where $\Delta k(\theta) = (2\omega/c)(n_e^{-2\omega}(\theta) - n_o^{-\omega})$. (20 pts.)

b. Assuming small birefringence $(n_e \approx n_o)$, show that

$$\Delta \theta \cong \frac{\lambda_{\omega}}{L(n_o^{2\omega} - n_e^{2\omega})\sin(2\theta_m)} \quad (5 \ pts.)$$

c. What limitation does this impose on the useful length of the crystal for an incident focused Gaussian beam of waist w_0 (recall: divergence angle is $\lambda/\pi nw_0$). (10 pts.)

d. <u>Briefly</u> discuss the implications of the above relationship for various angles (e.g. for $\theta_m = 90^\circ$). (5 pts.)

3. d_{eff}:

Consider AgGaSe₂ crystal in a SHG process. The orientation of the input field at ω is given by $E(\omega) = A_0(2\hat{x}+1\hat{y}+3\hat{z})$, where x, y, and z are the principle axes of the crystal. What is d_{eff}? (10 pts.)

Note: From table 1.5.3 and Fig. 1.5.2 (in Boyd) you get d_{il} (pm/V) tensor in AgGaSe₂ to be:

 $\begin{pmatrix} 0 & 0 & 0 & 81 & 0 & 0 \\ 0 & 0 & 0 & 0 & 81 & 0 \\ 0 & 0 & 0 & 0 & 0 & -81 \end{pmatrix}$

4. A fictional molecule has the following energy levels. Draw the spectrum (for $0 < \hbar \omega < 3 \text{ eV}$) for the **(a)** linear absorption coefficient α , **(b)** two-photon absorption coefficient β , **(c)** $|\chi^{(2)}(2\omega;\omega,\omega)|$ and **(d)** $|\chi^{(3)}(3\omega;\omega,\omega,\omega)|$. (30 pts.)

Be quantitative in your x-axis. Assume a finite broadening in your drawings. Point out the resonances (diagrammatically) on your graph for each case and show the relative strengths if obvious. Note: no calculations needed for this problem.

See H.W. Saluton R-SHG B.W No>ne $\Delta R(\theta) = \frac{2\omega}{C} \left(N_e^{2\omega}(A) - N_{\delta}^{\omega} \right)$ Taylor Series Expansion $\Delta R(Q) = \Delta R(Q_m) + \frac{\partial R}{\partial Q} \left[(Q - Q_m) + O(Q - Q_m) \right]_{T}$ $\Delta k(\partial + \frac{\partial \partial}{2}) L = \frac{\partial k}{\partial \Delta h} \frac{\Delta \partial}{2} L = 2T$ $\Delta Q = \frac{2 11}{\left(\frac{O k}{O A}\right)^2 L}$ $\frac{\alpha k}{\pi \alpha} = \frac{2\omega}{C} \frac{\partial h_e^2(a)}{\partial A}$ $\left(N_{e}^{2\omega}(\partial)\right)^{-2} = \left(N_{e}^{2\omega}\right)^{-2} \Delta + \left(N_{e}^{2\omega}\right)^{-2} C_{e} \Delta$ $N_{e}^{2w}(\partial) = \left[\left(N_{e}^{2w} \right)^{-2} \mathcal{Q}_{i} \partial + \left(N_{o}^{2w} \right)^{-2} \mathcal{Q}_{i} \partial \right]^{-\frac{1}{2}}$ - 3 - 2 $\frac{\partial n_e}{\partial \theta} = -\frac{1}{2} \left[\frac{2 \sum A e_0 \theta}{(n_e^{2w})^2} + \frac{-2 \sum \Theta e_0 \theta}{(n_e^{2w})^2} \right] \left[\frac{\partial \theta}{\partial \theta} \right]$

- ***2 7 $= -\frac{\operatorname{Seis}^{2} \operatorname{Om}}{2} \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{o}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} - \frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} \right] \left[\frac{1}{\left(n_{e}^{2} \upsilon \right)^{2}} -$ $(n_o^{\omega})^3$ $\frac{\partial n_{ela}}{\partial A} = \frac{-\Delta e_i 2 \partial_m}{2} \left(\frac{n_o^{\omega}}{(n_o^{\omega})^2} \left(\frac{1}{(n_e^{2\omega})^2} - \frac{1}{(n_e^{2\omega})^2} \right) \right)$ nezno zn 凶 $\frac{\partial n_e(a)}{\partial a} = -\frac{\partial L^2}{\partial a} \cdot \frac{n^3}{n^4} \left(\frac{n_o^2 - n_e^2}{n^4}\right) = \frac{\partial L^2}{\partial a}$ $= -\frac{\lambda_{120}}{\lambda_{11}} + \frac{n^3}{h^4} + 2n pm$ DN=(no-ne)24 ~ Reidn Dh. = 4TTAN Aud $\frac{\partial k}{\partial A_{b}} = \frac{2w}{c} \lambda 2\partial_{-} \lambda h$ An on Dildn . L DQ=

 $\Delta Q_{div} = \frac{\lambda}{\pi n W_0}$ we must have A Qui <2 A A Note: Adri is half angle DA - i full angli by depinder ThWo 22 20 "L $L \angle \frac{2\pi n W_o}{\Delta n \Delta \sin^2 \Theta_m} = R_d$ (Note this is the Dame as la from Populting nector walk-off). (HW#3) La = VTNWO puburom d) of $Q_m = \frac{\pi}{2}$, $Q_m \Rightarrow \infty$ This is because Sk >0 and minust Take higher order terms The expansions into account. (2'h, ...). This leads t DA = V 2L (no² - neⁱ)

 $E(w) = A_0(2\hat{x} + 1\hat{y} + 3\hat{z})$ $= A \circ \sqrt{14} \left(\frac{2}{\sqrt{14}} \times \frac{1}{\sqrt{14}} + \frac{3}{\sqrt{14}} \times \frac{3}{\sqrt{14}} \right)$ E, ê unit vertor. P=2 dep6 1 Ed $2 - \begin{bmatrix} 0 & 0 & 0 & 8 \\ 0 & 0 & 0 & -8 \end{bmatrix} \begin{bmatrix} E_{x}^{2} \\ E_{y}^{2} \\ E_{y}^{2} \\ E_{z}^{2} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & -8 \end{bmatrix} \begin{bmatrix} E_{x}^{2} \\ E_{y}^{2} \\ E_{z}^{2} \\ E_{z}^{2} \end{bmatrix}$ ZEGEr 4 $|\mathcal{F}_{6}|$ $\frac{1}{79}$ 9 6 日日 810 -Parl

Mrs-2P 1.2 ev is claserto 1 ev. 2 14. 2-(1W) resonance. 15-45. K-35 2m X(3) 6-7 1-2 , i k x (1) X X⁽¹⁾=0 (S xonnetry) (1-2) - (1-3) (1-2) (1-4) (3) X (3 u) 360 EW ev 0-33 6-7 1- 2 Z S