Laser Physics I (PHYS/ECE 464), Fall 2022

Homework \#3, Due Monday, Sept. 19

1 Consider the ring laser cavity shown in the accompanying diagram.
(a) Show an equivalent-lens waveguide for this cavity and identify a unit cell starting just after the lens and proceeding counterclockwise around the triangle.
(b) What is the transmission matrix for this unit cell? (Demonstrate that you have the component matrices in proper order.)
(c) What are the values of d / \int that make this a stable cavity?

2 Consider the cavity shown in the accompanying diagram.
(a) Construct an equivalent-lens waveguide.
(b) Indicate a unit cell starting at a flat mirror, R_{1}.
(c) Find the ray matrix for the unit cell of (b).
(d) Discuss the stability of this cavity by constructing a diagram similar to Fig. 2.9.

3. Consider the double concave confocal cavity shown below:
(a) Find the roundtrip ABCD matrix (Choose the starting point to be just before mirror 2).
(b) Discuss the stability of this cavity for the symmetric $\mathrm{R}_{1}=\mathrm{R}_{2}$, and asymmetric $\left(\mathrm{R}_{1} \neq \mathrm{R}_{2}\right)$ cases.
(c) A ray parallel to optical axis is incident on mirror 2 at a distance x_{0}-as shown. Derive an expression for the position $x(s)$ of this ray (on mirror 2) as a function of roundtrip number s. Discuss your results for cases $\mathrm{R}_{1}=\mathrm{R}_{2}$, $\mathrm{R}_{1}>\mathrm{R}_{2}$ and $\mathrm{R}_{1}<\mathrm{R}_{2}$.

(d) Draw the ray diagram for a few round trips in each case.

