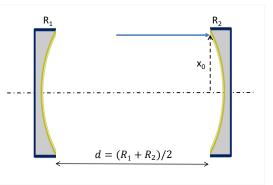

Laser Physics I (PHYS/ECE 464), Fall 2022

Homework #3, Due Monday, Sept. 19

- 1 Consider the ring laser cavity shown in the accompanying diagram.
 - (a) Show an equivalent-lens waveguide for this cavity and identify a unit cell starting just after the lens and proceeding counterclockwise around the triangle.
 - (b) What is the transmission matrix for this unit cell? (Demonstrate that you have the component matrices in proper order.)
 - (c) What are the values of d/f that make this a stable cavity?

- 2 Consider the cavity shown in the accompanying diagram.
 - (a) Construct an equivalent-lens waveguide.
 - (b) Indicate a unit cell starting at a flat mirror, R_1 .
 - (c) Find the ray matrix for the unit cell of (b).
 - (d) Discuss the stability of this cavity by constructing a diagram similar to Fig. 2.9.


3. Consider the double concave <u>confocal cavity</u> shown below:

(a) Find the roundtrip ABCD matrix (Choose the starting point to be just before mirror 2).

(b) Discuss the stability of this cavity for the symmetric $R_1=R_2$, and asymmetric $(R_1\neq R_2)$ cases.

(c) A ray parallel to optical axis is incident on mirror 2 at a distance x_0 -as shown. Derive an expression for the position x(s) of this ray (on mirror 2) as a function of roundtrip number s. Discuss your results for cases $R_1=R_2$, $R_1>R_2$ and $R_1<R_2$.

(d) Draw the ray diagram for a few round trips in each case.

