Laser Physics I (PHYC/ECE 464) FALL 2020

Final Exam, Closed Book, Closed Notes

Time: 3:00 – 5:00 pm

Total= 100 points

Please staple these pages with your solutions.

Have a Safe and Happy Thanksgiving!

Instructor: M. Sheik-Bahae

1. (20 points) Consider a simple standing-wave cavity constructed from a concave and two flat reflectors as shown below.

(You do not need to use the ABCD matrices to solve this problem)

a) Give an expression (as a function of d) for beam radius w at mirror M2 for a wavelength λ_0 .

b) What find the range of d for which the cavity is stable.

2. (20 points) A Fabry-Perot (FP) cavity formed by two mirrors having reflectivity R_1 and R_2 is filled with an absorber having an absorbance $A_0 (= e^{-\alpha d} < 1)$.

Assuming on-resonance ($\theta = kd = m\pi$), can you find values for **R**₁ and **R**₂ (anywhere between 0 to 100%) for which all the incident power is absorbed inside the FP? (i.e. $I_{tr} = I_{ref} = 0$).

This simple yet interesting condition has been called "perfect coherent absorber" or "critical coupling".

3. Rate Equations: (20 points) Write down the rate equations for the following 5-level system where optical pumping is from the ground state to level 4, and stimulated absorption/emission is between levels 1 and 2.

The known paramers (in addition to those shown in the figure) are each level liftime τ_j (j=1,2,3,4), branching rations ϕ_{ji} (i<j), and the total atomic density (N_t). Assume all degnerency factors are unity.

4. (20 points) Consider the unidirectional ring cavity shown below. The gain medium is an ideal Brewster-cut crystal. There is an absorber in the cavity with absorbence $A_0 = \alpha_0 l$ and imperfet surface reflectivities.

- (a) What is the prefered laser polarization (x,y or z), and why?
- (b) What is the survival factor of the passive cavity?.
- (c) What is the threshold gain γ_{th} ?
- (d) Pumped N-times above threshold $(\frac{\gamma_0}{\gamma_{th}} = N)$, what is the output intensity (through mirror 2)? You may assume high -Q cavity.

5. Consider the laser system shown: (20 points)

a. If Q-switched, approximately sketch the pulse shape assuming two cases of (i) one and (ii) two longitudinal modes? Be semi-quantitative on your time-axis. {e.g. approximate pulsewidth)

b. If cw- modelocked, approximately sketch the pulse train assuming the shortest pulse. How many longitudinal modes will oscillate? Be semi-quantitative on your time-axis

Final Formula Sheet PHYS/ECE 464 (Laser Physics I)- University of New Mexico (2020)

Hermite-Gaussian Beams					
$\frac{E(x, y, z)}{E_0} = H_m \left(\frac{\sqrt{2}x}{w(z)}\right)$	$\bigg)H_p\bigg(\frac{\sqrt{2}y}{w(z)}\bigg)\frac{w_0}{w(z)}\exp\bigg(-$	$-i\frac{kr^2}{2q(z)}$	$\left(-i\left[kz-(1+m+1)\right]\right)$	$(p)\tan^{-1}(z/z0)\Big]\Big)$	
$\frac{1}{q(z)} = \frac{1}{R(z)} - i\frac{\lambda_0}{\pi n w^2(z)}, \qquad w^2(z) = w_0^2 \left(1 + \frac{z^2}{z_0^2}\right), \qquad R(z) = z \left(1 + \frac{z_0^2}{z^2}\right), \qquad z_0 = \frac{\pi n w_0^2}{\lambda_0}, \qquad k = n\frac{\omega}{c} = \frac{2\pi n}{\lambda_0}$					
Irradiance: $I = \langle S \rangle = \frac{nc\varepsilon_0}{2} E_0^2$		Sr	nell's Law $n_i \sin(\theta_i) = n_i \sin(\theta_i)$	(θ_t)	
Fresnel's reflectivities:		Intensity (Power) reflectivity: $R= r ^2$			
$r_{\parallel} = \frac{n_t \cos(\theta_i) - n_i \cos(\theta_t)}{n_t \cos(\theta_i) + n_i \cos(\theta_t)} = \frac{\tan(\theta_i - \theta_t)}{\tan(\theta_i + \theta_t)}$		Brewster angle (from 1 to 2): $\theta_B = \tan^{-1}(n_2 / n_1)$			
		Critical angle (from 1 to 2): $\theta_c = \sin^{-1}(n_1 / n_2)$			
$n \cos(\theta) = n \cos(\theta) = \sin(\theta - \theta)$		$n \rightarrow \tilde{n} = n + i\kappa$ in <i>n</i> complex			
$r_{\perp} = -\frac{n_i \cos(\theta_i) - n_i \cos(\theta_i)}{n_i \cos(\theta_i) + n_i \cos(\theta_i)} = -\frac{\sin(\theta_i - \theta_i)}{\sin(\theta_i + \theta_i)}$					
Lens Transformation of a Gaussian beam: $\frac{1}{R_{out}} = \frac{1}{R_{in}} - \frac{1}{f}$ $\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ Lens-makers' formula:					
Fabry-Perot Transmission and Reflection (with gain $G_0 > 1$ or loss $A_0 < 1$)					
$T(\theta, G_0) = \frac{G_0(1-G_0)}{(1-G_0)^2}$	$\frac{-R_1(1-R_2)}{+AG} = \frac{RR}{\sin^2(\theta)}$		$T_{income} = \frac{\pi 4}{RR}$ As		
$(1 - G_0 \sqrt{R_1 R_2}) + 4G_0 \sqrt{R_1 R_2} \sin^2(\theta)$			$F = \frac{\pi \sqrt{\kappa_1 \kappa_2}}{1 - \sqrt{R_1 R_2}} = \frac{\Delta V_{FSR}}{\Delta V_{1/2}}$		
$\left(\sqrt{R_1} - G_0\sqrt{R_2}\right)$	$\left(\int_{-\infty}^{\infty} + 4G_0 \sqrt{R_1 R_2} \sin^2(\theta) \right)$		Free Spectral Range: $\Delta v_{men} = \frac{c}{1} = \frac{1}{1}$		
$R(\theta, G_0) = \frac{(\sqrt{1 - 6\sqrt{2}})}{(1 - G_0\sqrt{R_1R_2})}$	$\int_{0}^{0} \sqrt{R_1 R_2} \sin^2(\theta)$	$\Gamma_{FSR} = 2nd \tau_{RT}$			
$(1 \circ 0_0 \mathbf{y} \cdot 1_1 \cdot 2_2) = 1 \circ 0_0 \mathbf{y} \cdot 1_1 \cdot 2_2 \circ \dots \circ 0_1$			Photon Lifetime: τ_{RT} 1		
$2\Delta\theta_{\rm cr} = \frac{1 - G_0 \sqrt{R_1 R_2}}{1 - G_0 \sqrt{R_1 R_2}}$			$\tau_p = \frac{1}{1 - R_1 R_2} \approx \frac{1}{2\pi \Delta \nu_{1/2}}$		
$\frac{1}{G_0^{1/2}} \frac{1}{\sqrt{R_1R_2}}$			General Resonance Condition:		
$\theta = kd = \frac{cond}{c}$		roundtrip phase change= $q2\pi$			
For absorption replace G_0 with $A_0(<1)$					
ABCD Matrices $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ AD-BC=1		$\binom{r_2}{r_2'} = \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{cc} A & B \\ C & D \end{array} \begin{pmatrix} r_i \\ r'_i \end{pmatrix} $		
Free space of length d	Dielectric interface (from	ABCI	O rule for Gaussian	$q(z) = z + iz_0$	
$\begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} n_1 \text{ to } n_2 \end{pmatrix}$	Beam	S = A a + B	or	
$\begin{pmatrix} 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & n_1/n_2 \end{pmatrix}$	$q_2 = \frac{1}{6}$	$\frac{Aq_1 + B}{Ca_1 + D}$ where	$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda_0}{\pi n w(z)^2}$	
medium of length d	Thin lens of focal length f	Gaussi	ian pulse propagation (broade	ning) in dispersive	
and index $n_2=n$	$\begin{pmatrix} 1 & 0 \end{pmatrix}$	media			
immersed in vacuum $(n_1=1)$.	$\begin{pmatrix} -1/f & 1 \end{pmatrix}$	$\tau_{p}^{2}(z) = \tau_{p0}^{2} \left(1 + \frac{z^{2}}{a^{2}} \right)$ where $\ell_{0} = \frac{\tau_{p0}^{2}}{2 z ^{2}}$ and			
$\begin{pmatrix} 1 & d/n \end{pmatrix}$		group velocity dispersion (GVD) $\beta_2 = \frac{\lambda^3}{2\pi c^2} \frac{d^2 n}{d\lambda^2} = \frac{\lambda^2}{2\pi c} D$		$a^3 d^2 n a^2$	
$\begin{pmatrix} 0 & 1 \end{pmatrix}$					
Mirror with radius of Spherical dielectric Photon		n Density (Photon Number per Volume)			
(1 0) interface		$\frac{N_p}{N_p} = \frac{I}{1 + 1}$			
$\begin{bmatrix} 1 & 0 \\ -2/R & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ (1-n/n)/R & n/n \end{bmatrix}$			$V hvc/n_g$		
	$((1 - n_1 / n_2) / K - n_1 / n_2)$				

 $\begin{array}{ll} \text{Gain in a two-level system: } \gamma(v) = \sigma(v) \begin{bmatrix} N_2 - \frac{g_2}{g_1} N_1 \end{bmatrix} & \text{Gain cross section: } \sigma(v) = A_{21} \frac{\lambda^2}{8\pi n^2} g(v) \\ \text{Lineshape Normalization: } \int g(v) dv = 1 & \text{Beer's Law: } \frac{1}{I} \frac{dI}{dz} = -\alpha(I) + \gamma(I) \\ \text{Gain or absorption saturation in a homogenously-broadened system:} \\ \gamma(I) = \frac{\gamma_0}{1 + I/I_s} & \text{or } \alpha(I) = \frac{\alpha_0}{1 + I/I_s} & I_s(v) = \frac{hv}{\sigma(v)\tau_2} \\ \text{Einstein's relation: } \frac{A_{21}}{B_{21}} = \frac{8\pi n^3 hv^3}{c^3} & g_2 B_{21} = g_1 B_{12} & \frac{N_2}{N_1} = \frac{g_2}{g_1} e^{-(E_2 - E_1)/kT} \\ \end{array}$

 $\frac{dN_p}{dt} = \frac{G^2 S - 1}{\tau_{RT}} N_p + N_2 c\sigma$ (Photon number dynamics due to *stimulated* and *spontaneous* emission)

S (survival factor)= R_1R_2 (only) for a simple two mirror linear cavity, G^2 =roundtrip gain = e^{2g} , with $g=\gamma L_g$ (integrated gain). Threshold condition: SG²=1 (linear cavity), SG=1 (ring cavity)

Schawlow-Townes limit for laser linewidth: $\Delta v_{osc} \approx 2\pi \frac{hv}{P_{out}} (\Delta v_{1/2})^2$

At steady-state: $\gamma = \gamma_{th} = \frac{\gamma_0}{1+I/I_s}$ (for homogenously broadened) Inside the gain medium: $I \approx I^+ + I^- \approx 2I^+$ for a high-Q linear (standing-wave) or bidirectional ring cavity, $I \approx I^+$ for a unidirectional ring cavity.

 $I_{out}=T_{a..}T_2I^+$ (T₂ is the output coupling transmission and T_a... are the transmission of other optical surfaces in the path).

Optimum output coupling: $T_2^{opt} = -L_i + (g_0 L_i)^{1/2}$ where L_i accounts for roundtrip internal (useless) losses, $g_0 = \gamma_0 l_g$ is the unsaturated (small signal) integrated gain. l_g is the length of the gain medium.

Q-Switching and Gain-Switching: $\Delta t_p \approx \tau_p$ (cavity photon lifetime)

Modelocking: Repetition Rate = $1/T_{rt}=2Ln_g/c$ (linear cavity), Pulsewidth: $\Delta t_p \approx >1/\Delta v$

Threshold current density in a diode laser: $J_{th} = e N_{eh}{}^{th} d/\tau_r$

i nysicui constants					
$c \sim 3 \times 10^8 \text{ m} \cdot \text{s}^{-1}$	$h=6.63 \times 10^{-34} \text{ J} \cdot \text{s}$	$e=1.6 \times 10^{-19} \text{ C}$			
$k_B = 1.380 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$	$\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$	$m_e = 9.1 \times 10^{-31} \text{ kg}$			
$1G = 10^{-4} \text{ T}$, $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$, $1 \text{ dyne} = 10^{-5} \text{ N}$, $1 \text{ erg} = 10^{-7} \text{ J}$					

Physical Constants