Laser Physics I (PHYC/ECE 464)

FALL 2020

Final Exam, Closed Book, Closed Notes

Time: 3:00-5:00 pm

Total $=100$ points

Please staple these pages with your solutions.
Have a Safe and Happx Thanksgiving!

Instructor: M. Sheik-Bahae

1. (20 points) Consider a simple standing-wave cavity constructed from a concave and two flat reflectors as shown below.
(You do not need to use the ABCD matrices to solve this problem)

a) Give an expression (as a function of d) for beam radius w at mirror M 2 for a wavelength λ_{0}.
b) What find the range of d for which the cavity is stable.
2. (20 points) A Fabry-Perot (FP) cavity formed by two mirrors having reflectivity R_{1} and R_{2} is filled with an absorber having an absorbance $A_{0}\left(=e^{-\alpha d}<1\right)$.

Assuming on-resonance ($\theta=k d=m \pi$), can you find values for $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ (anywhere between 0 to 100%) for which all the incident power is absorbed inside the FP? (i.e. $I_{t r}=I_{r e f}=0$).

This simple yet interesting condition has been called "perfect coherent absorber" or "critical coupling".
3. Rate Equations: (20 points) Write down the rate equations for the following 5 -level system where optical pumping is from the ground state to level 4 , and stimulated absorption/emission is between levels 1 and 2 .

The known paramers (in addtion to those shown in the figure) are each level liftime $\tau_{j}(\mathrm{j}=1,2,3,4)$, branching rations $\phi_{j i}$ $(\mathrm{i}<\mathrm{j})$, and the total atomic density $\left(\mathrm{N}_{\mathrm{t}}\right)$. Assume all degnerency factors are unity.

4. (20 points) Consider the unidirectional ring cavity shown below. The gain medium is an ideal Brewster-cut crystal . There is an absorber in the cavity with absorbence $A_{0}=\alpha_{0} l$ and imperfet surface reflectivities.

(a) What is the prefered laser polarization (x, y or z), and why?
(b) What is the survival factor of the passive cavity?.
(c) What is the threshold gain $\gamma_{t h}$?
(d) Pumped N-times above threshold $\left(\frac{\gamma_{0}}{\gamma_{t h}}=N\right)$, what is the output intensity (through mirror 2)? You may assume high -Q cavity.
5. Consider the laser system shown: (20 points)

a. If Q-switched, approximately sketch the pulse shape assuming two cases of (i) one and (ii) two longitudinal modes? Be semi-quantitative on your time-axis. \{e.g. approximate pulsewidth)
b. If cw- modelocked, approximately sketch the pulse train assuming the shortest pulse. How many longitudinal modes will oscillate? Be semi-quantitative on your time-axis

Final Formula Sheet
 PHYS/ECE 464 (Laser Physics I)- University of New Mexico (2020)

Hermite-Gaussian Beams

$\frac{E(x, y, z)}{E_{0}}=H_{m}\left(\frac{\sqrt{2} x}{w(z)}\right) H_{p}\left(\frac{\sqrt{2} y}{w(z)}\right) \frac{w_{0}}{w(z)} \exp \left(-i \frac{k r^{2}}{2 q(z)}\right) \times \exp \left(-i\left[k z-(1+m+p) \tan ^{-1}(z / z 0)\right]\right)$
$\frac{1}{q(z)}=\frac{1}{R(z)}-i \frac{\lambda_{0}}{\pi n w^{2}(z)}, \quad w^{2}(z)=w_{0}^{2}\left(1+\frac{z^{2}}{z_{0}^{2}}\right), \quad R(z)=z\left(1+\frac{z_{0}^{2}}{z^{2}}\right), \quad z_{0}=\frac{\pi n w_{0}^{2}}{\lambda_{0}} \quad k=n \frac{\omega}{c}=\frac{2 \pi n}{\lambda_{0}}$
Irradiance: $I=\langle S\rangle=\frac{n c \varepsilon_{0}}{2} E_{0}{ }^{2}$
Fresnel's reflectivities: Snell's Law $n_{i} \sin \left(\theta_{i}\right)=n_{t} \sin \left(\theta_{t}\right)$
$r_{i l}=\frac{n_{t} \cos \left(\theta_{i}\right)-n_{i} \cos \left(\theta_{t}\right)}{n_{t} \cos \left(\theta_{i}\right)+n_{i} \cos \left(\theta_{t}\right)}=\frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)}$
Intensity (Power) reflectivity: $\mathrm{R}=|\mathrm{r}|^{2}$
Brewster angle (from 1 to 2): $\theta_{B}=\tan ^{-1}\left(n_{2} / n_{1}\right)$
Critical angle (from 1 to 2): $\theta_{c}=\sin ^{-1}\left(n_{1} / n_{2}\right)$
$r_{\perp}=-\frac{n_{i} \cos \left(\theta_{i}\right)-n_{t} \cos \left(\theta_{t}\right)}{n_{i} \cos \left(\theta_{i}\right)+n_{t} \cos \left(\theta_{t}\right)}=-\frac{\sin \left(\theta_{i}-\theta_{t}\right)}{\sin \left(\theta_{i}+\theta_{t}\right)}$
$n \rightarrow \tilde{n}=n+i \kappa$ in n complex
Lens Transformation of a Gaussian beam: $\frac{1}{R_{\text {out }}}=\frac{1}{R_{\text {in }}}-\frac{1}{f} \quad \frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ Lens-makers' formula:

Fabry-Perot Transmission and Reflection (with gain $\mathrm{G}_{0}>1$ or loss $\mathrm{A}_{0}<1$)

$$
\begin{aligned}
& T\left(\theta, G_{0}\right)=\frac{G_{0}\left(1-R_{1}\right)\left(1-R_{2}\right)}{\left(1-G_{0} \sqrt{R_{1} R_{2}}\right)^{2}+4 G_{0} \sqrt{R_{1} R_{2}} \sin ^{2}(\theta)} \\
& R\left(\theta, G_{0}\right)=\frac{\left(\sqrt{R_{1}}-G_{0} \sqrt{R_{2}}\right)^{2}+4 G_{0} \sqrt{R_{1} R_{2}} \sin ^{2}(\theta)}{\left(1-G_{0} \sqrt{R_{1} R_{2}}\right)^{2}+4 G_{0} \sqrt{R_{1} R_{2}} \sin ^{2}(\theta)} \\
& 2 \Delta \theta_{1 / 2}=\frac{1-G_{0} \sqrt{R_{1} R_{2}}}{G_{0}^{1 / 2}} \sqrt[4]{R_{1} R_{2}} \\
& \theta=k d=\frac{\omega n d}{c}
\end{aligned}
$$

For absorption replace G_{0} with $A_{0}(<1)$

ABCD Matrices $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \quad$ AD-BC=1 $\quad\binom{r_{2}}{r_{2}^{\prime}}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\binom{r_{1}}{r_{1}^{\prime}}$

Free space of length d $\left(\begin{array}{ll} 1 & d \\ 0 & 1 \end{array}\right)$	Dielectric interface (from n_{1} to n_{2}) $\left(\begin{array}{cc} 1 & 0 \\ 0 & n_{1} / n_{2} \end{array}\right)$	ABCD rule for Gaussian $q(z)=z+i z_{0}$ Beams or $q_{2}=\frac{A q_{1}+B}{C q_{1}+D} \quad$ where $\frac{1}{q(z)}=\frac{1}{R(z)}-i \frac{\lambda_{0}}{\pi n w(z)^{2}}$
medium of length d and index $n_{2}=n$ immersed in vacuum ($\mathrm{n}_{1}=1$). $\left(\begin{array}{cc} 1 & d / n \\ 0 & 1 \end{array}\right)$	Thin lens of focal length f $\left(\begin{array}{cc} 1 & 0 \\ -1 / f & 1 \end{array}\right)$	Gaussian pulse propagation (broadening) in dispersive media $\tau_{p}^{2}(z)=\tau_{p 0}^{2}\left(1+\frac{z^{2}}{\ell_{0}^{2}}\right)$ where $\ell_{0}=\frac{\tau_{p 0}^{2}}{2\left\|\beta_{2}\right\|}$ and group velocity dispersion (GVD) $\beta_{2}=\frac{\lambda^{3}}{2 \pi c^{2}} \frac{d^{2} n}{d \lambda^{2}}=\frac{\lambda^{2}}{2 \pi c} D$
Mirror with radius of curvature R $\left(\begin{array}{cc} 1 & 0 \\ -2 / R & 1 \end{array}\right)$	Spherical dielectric interface $\left(\begin{array}{cc} 1 & 0 \\ \left(1-n_{1} / n_{2}\right) / R & n_{1} / n_{2} \end{array}\right)$	Photon Density (Photon Number per Volume) $\frac{N_{p}}{V}=\frac{I}{h v c / n_{g}}$

Gain in a two-level system: $\gamma(v)=\sigma(v)\left[N_{2}-\frac{g_{2}}{g_{1}} N_{1}\right] \quad$ Gain cross section: $\sigma(v)=A_{21} \frac{\lambda^{2}}{8 \pi n^{2}} g(v)$
Lineshape Normalization: $\int g(v) d v=1$
Beer's Law: $\frac{1}{I} \frac{d I}{d z}=-\alpha(I)+\gamma(I)$

Gain or absorption saturation in a homogenously-broadened system:
$\gamma(I)=\frac{\gamma_{0}}{1+I / I_{s}} \quad$ or $\quad \alpha(I)=\frac{\alpha_{0}}{1+I / I_{s}} \quad I_{s}(v)=\frac{h v}{\sigma(v) \tau_{2}}$
Einstein's relation: $\frac{A_{21}}{B_{21}}=\frac{8 \pi n^{3} / v^{3}}{c^{3}} \quad g_{2} B_{21}=g_{1} B_{12} \quad \frac{N_{2}}{N_{1}}=\frac{g_{2}}{g_{1}} e^{-\left(E_{2}-E_{1}\right) / k T}$

Lorentzian line shape:	Doppler broadened line shape
$g(v)=\frac{\Delta v_{h} / 2 \pi}{\left(v-v_{0}\right)^{2}+\left(\Delta v_{h} / 2\right)^{2}}$	$g(v)=\left(\frac{4 \ln 2}{\pi}\right)^{1 / 2} \frac{1}{\Delta v_{D}} \exp \left[(-4 \ln 2)\left(\frac{v-v_{0}}{\Delta v_{D}}\right)^{2}\right] \quad$ with $\Delta v_{D}=\left(\frac{8 k T \ln 2}{M c^{2}}\right)^{1 / 2} v_{0}$

$\frac{d N_{p}}{d t}=\frac{G^{2} S-1}{\tau_{R T}} N_{p}+N_{2} c \sigma$ (Photon number dynamics due to stimulated and spontaneous emission) S (survival factor) $=R_{l} R_{2}$ (only) for a simple two mirror linear cavity, $\quad G^{2}=$ roundtrip gain $=\mathrm{e}^{2 g}$, with $\mathrm{g}=\gamma \mathrm{L}_{\mathrm{g}}$ (integrated gain). Threshold condition: $\mathrm{SG}^{2}=1$ (linear cavity), $\mathrm{SG}=1$ (ring cavity)

Schawlow-Townes limit for laser linewidth: $\Delta v_{\text {osc }} \approx 2 \pi \frac{h \nu}{P_{\text {out }}}\left(\Delta v_{1 / 2}\right)^{2}$
At steady-state: $\boldsymbol{\gamma}=\gamma_{\boldsymbol{t h}}=\frac{\gamma_{0}}{1+I / I_{s}}$ (for homogenously broadened)
Inside the gain medium: $\mathrm{I} \approx \mathrm{I}^{+}+\mathrm{I}^{-} \approx 2 \mathrm{I}^{+}$for a high-Q linear (standing-wave) or bidirectional ring cavity, $\mathrm{I}^{\mathrm{I}} \mathrm{I}^{+}$for a unidirectional ring cavity.
$\mathbf{I}_{\text {out }}=\mathbf{T}_{\mathrm{a} . . \mathbf{T}_{2} \mathbf{I}^{+}\left(\mathrm{T}_{2} \text { is the output coupling transmission and } \mathrm{T}_{\mathrm{a}} \ldots \text { are the transmission of other }\right.}$ optical surfaces in the path).

Optimum output coupling: $\mathbf{T}_{\mathbf{2}}{ }^{\mathbf{0 p t}}=\mathbf{-} \mathbf{L}_{\mathbf{i}}+\left(\mathbf{g}_{\mathbf{0}} \mathbf{L}_{\mathbf{i}}\right)^{\mathbf{1 / 2}}$ where L_{i} accounts for roundtrip internal (useless) losses, $\mathrm{g}_{0}=\gamma_{0} \log _{\mathrm{g}}$ is the unsaturated (small signal) integrated gain. l_{g} is the length of the gain medium.

Q-Switching and Gain-Switching: $\Delta \mathrm{t}_{\mathrm{p}} \approx \tau_{\mathrm{p}}$ (cavity photon lifetime)
Modelocking: Repetition Rate $=1 / \mathrm{T}_{\mathrm{rt}}=2 \mathrm{Ln}_{\mathrm{g}} / \mathrm{c}$ (linear cavity), Pulsewidth: $\Delta \mathrm{t}_{\mathrm{p}} \approx>1 / \Delta v$
Threshold current density in a diode laser: $\mathrm{J}_{\mathrm{th}}=\mathrm{eN} \mathrm{Neh}^{\mathrm{th}} \mathrm{d} / \tau_{\mathrm{r}}$
Physical Constants

$\mathrm{c} \sim 3 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$	$\mathrm{~h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$	$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
$\mathrm{k}_{\mathrm{B}}=1.380 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1}$	$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$	$\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$

$$
1 \mathrm{G}=10^{-4} \mathrm{~T}, \quad 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}, \quad 1 \text { dyne }=10^{-5} \mathrm{~N}, 1 \mathrm{erg}=10^{-7} \mathrm{~J}
$$

