Laser Physics I (PHYC/ECE 464)

Final Exam, Closed Book, Closed Notes
No computers, No cell-phones. Calculators will be provided Dec. 9, 2019, Time: 5:30-7:30 pm

Total $=100$

- Write your name on each sheet.
- Please staple and return these pages with your exam.

1. (30 points) A laser beam with wavelength $\boldsymbol{\lambda}_{0}$ is incident from left on a lens with focal length \mathbf{f} placed at a distance $\mathbf{z}_{\mathbf{1}}$ after its minimum waist, as shown below.

(a) (15 pts.) What is the \mathbf{q}-parameter, beam radius \mathbf{w} and radius of curvature \mathbf{R} at the following locations:
a. $1 \quad$ Just before the lens?
a. $2 \quad$ Right after the lens?
a. $3 \quad$ At an arbitrary distance z_{2} after the lens?
(b) (15 pts.) Show how to determine the location $\left(\mathrm{z}_{\mathrm{f}}\right)$ and the value $\left(\mathrm{w}_{02}\right)$ of the new focus in terms of the given parameters.
2. (40 points) Consider the laser system below with an average CW output power of $\mathbf{3}$ Watts with an optimized output coupling $\left(\boldsymbol{T}_{2}^{\boldsymbol{o p t}}\right)$ when pumped at an integrated small-signal gain of $\mathbf{g}_{\mathbf{0}}=\mathbf{0 . 2 5}$. The only internal loss is from an intracavity absorber with $\boldsymbol{\alpha}_{0} \mathbf{L}=\mathbf{0 . 0 2}$. All other intracavity surfaces are considered lossless (AR coated). The beam radius inside the cavity is $\mathbf{w} \sim \mathbf{8 0} \boldsymbol{\mu \mathrm { m }}$ inside the gain and absorber media.

(a) What is the output coupler reflectivity \mathbf{R}_{2} ?
(b) What are $\boldsymbol{g}_{\boldsymbol{t} \boldsymbol{h}}$ and $\boldsymbol{\gamma}_{\boldsymbol{0}} / \boldsymbol{\gamma}_{\boldsymbol{t} \boldsymbol{h}}$?
(c) What is the total intensity inside the gain medium and the gain saturation intensity? (Assume and justify a high-Q cavity, and assume homogeneously broadened gain)
(d) Estimate the total power absorbed in the absorber.

This laser may be CW mode-locked to generate a train of pulses with $\mathbf{1 0 0} \mathbf{~ M H z}$ repetition rate and a peak pulse power of $\mathrm{P}_{\text {peak }} \sim \mathbf{3 0 0} \mathbf{~ k W}$.
(e) Estimate the pulsewidth $\Delta \mathrm{t}_{\mathrm{p}}$?
(f) What is the effective cavity length d (assume $\mathrm{n}_{\mathrm{g}}=1$)?
(g) What is the saturation intensity of the absorber knowing that it saturates to $\mathbf{9 0 \%}$ to its unsaturated value when the laser is mode-locked.
(h) What lifetime characteristics render the gain and the saturable absorber suitable for modelocking?
(a) (10 pts.) Write the rate equations for this 4-level system assuming optical pumping from levels $0 \rightarrow 3$ and laser action from levels $2 \rightarrow 1$. Lifetimes τ_{3}, τ_{2}, τ_{1}, and branching rations $\phi_{32}, \phi_{31}, \phi_{30}, \phi_{21}, \phi_{20}$, and degeneracy factors $g_{0}, g_{1}, g_{2}, g_{3}$ are known.

(b) (10 pts.) The above system is to be used as a laser amplifier. Assume $v_{p}=2 v_{12}, \phi_{31} \sim \phi_{30} \sim \phi_{20} \sim 0, \phi_{32}=0.8, \tau_{1} \sim 0$. If 15 W of pump power is absorbed, what is the maximum power that can be possibly extracted from this amplifier.
(c) (10 pts.) If $\lambda_{12}=\mathbf{1} \boldsymbol{\mu m}, \tau_{2}=\mathbf{1} \boldsymbol{\mu s}$, estimate the total population in level 2 for part 3-(b)

Formula Sheet
PHYC/ECE 464 (Laser Physics I)- University of New Mexico (2019)
Instructor: Mansoor Sheik-Bahae
Hermite-Gaussian Beams
$\frac{E(x, y, z)}{E_{0}}=H_{m}\left(\frac{\sqrt{2} x}{w(z)}\right) H_{p}\left(\frac{\sqrt{2} y}{w(z)}\right) \frac{w_{0}}{w(z)} \exp \left(-i \frac{k r^{2}}{2 q(z)}\right) \times \exp \left(-i\left[k z-(1+m+p) \tan ^{-1}(z / z 0)\right]\right)$
$\frac{1}{q(z)}=\frac{1}{R(z)}-i \frac{\lambda_{0}}{\pi n w^{2}(z)}, \quad w^{2}(z)=w_{0}^{2}\left(1+\frac{z^{2}}{z_{0}^{2}}\right), \quad R(z)=z\left(1+\frac{z_{0}^{2}}{z^{2}}\right), \quad z_{0}=\frac{\pi n w_{0}^{2}}{\lambda_{0}} \quad k=n \frac{\omega}{c}=\frac{2 \pi n}{\lambda_{0}}$

Irradiance: $I=\langle S\rangle=\frac{n c \varepsilon_{0}}{2} E_{0}{ }^{2}$
Fresnel's reflectivities:
$r_{\|}=\frac{n_{t} \cos \left(\theta_{i}\right)-n_{i} \cos \left(\theta_{t}\right)}{n_{t} \cos \left(\theta_{i}\right)+n_{i} \cos \left(\theta_{t}\right)}=\frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)}$
$r_{\perp}=-\frac{n_{i} \cos \left(\theta_{i}\right)-n_{t} \cos \left(\theta_{t}\right)}{n_{i} \cos \left(\theta_{i}\right)+n_{t} \cos \left(\theta_{t}\right)}=-\frac{\sin \left(\theta_{i}-\theta_{t}\right)}{\sin \left(\theta_{i}+\theta_{t}\right)}$
Snell's Law $n_{i} \sin \left(\theta_{i}\right)=n_{t} \sin \left(\theta_{t}\right)$
Intensity (Power) reflectivity: $\mathrm{R}=|\mathrm{r}|^{2}$
Brewster angle (from 1 to 2): $\theta_{B}=\tan ^{-1}\left(n_{2} / n_{1}\right)$
Critical angle (from 1 to 2): $\theta_{c}=\sin ^{-1}\left(n_{1} / n_{2}\right)$
$n \rightarrow \tilde{n}=n+i \kappa$ in n complex

Lens Transformation of a Gaussian beam: $\frac{1}{R_{\text {out }}}=\frac{1}{R_{\text {in }}}-\frac{1}{f} \quad \frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ Lens-makers' formula:
Fabry-Perot Transmission and Reflection (with gain or loss)

$$
\begin{aligned}
& T\left(\theta, G_{0}\right)=\frac{G_{0}\left(1-R_{1}\right)\left(1-R_{2}\right)}{\left(1-G_{0} \sqrt{R_{1} R_{2}}\right)^{2}+4 G_{0} \sqrt{R_{1} R_{2}} \sin ^{2}(\theta)} \\
& R\left(\theta, G_{0}\right)=\frac{\left(\sqrt{R_{1}}-G_{0} \sqrt{R_{2}}\right)^{2}+4 G_{0} \sqrt{R_{1} R_{2}} \sin ^{2}(\theta)}{\left(1-G_{0} \sqrt{R_{1} R_{2}}\right)^{2}+4 G_{0} \sqrt{R_{1} R_{2}} \sin ^{2}(\theta)} \\
& 2 \Delta \theta_{1 / 2}=\frac{1-G_{0} \sqrt{R_{1} R_{2}}}{G_{0}^{1 / 2} \sqrt[4]{R_{1} R_{2}}} \\
& \theta=k d=\frac{\omega n d}{c}
\end{aligned}
$$

Finesse $_{F}=\frac{\pi \sqrt[4]{R_{1} R}}{1-\sqrt{R_{1} R_{2}}}=\frac{\Delta v_{F S R}}{\Delta v_{1 / 2}}$
Free Spectral Range: $\Delta v_{F S R}=\frac{c}{2 n d}=\frac{1}{\tau_{R T}}$
Photon Lifetime:

$$
\tau_{p}=\frac{\tau_{R T}}{1-R_{1} R_{2}} \approx \frac{1}{2 \pi \Delta v_{1 / 2}}
$$

General Resonance Condition:
roundtrip phase change $=q 2 \pi$

ABCD Matrices $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \quad$ AD-BC=1 $\quad\binom{r_{2}}{r_{2}^{\prime}}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\binom{r_{1}}{r_{1}^{\prime}}$

Free space of length d $\left(\begin{array}{ll} 1 & d \\ 0 & 1 \end{array}\right)$	Dielectric interface (from n_{1} to n_{2}) $\left(\begin{array}{cc} 1 & 0 \\ 0 & n_{1} / n_{2} \end{array}\right)$	ABCD rule for Gaussian $q(z)=z+i z_{0}$ Beams or $q_{2}=\frac{A q_{1}+B}{C q_{1}+D} \quad$ where $\frac{1}{q(z)}=\frac{1}{R(z)}-i \frac{\lambda_{0}}{\pi n w(z)^{2}}$
medium of length d and index $n_{2}=n$ immersed in vacuum $\begin{aligned} & \left(\mathrm{n}_{1}=1\right) . \\ & \left(\begin{array}{cc} 1 & d / n \\ 0 & 1 \end{array}\right) \end{aligned}$	Thin lens of focal length f $\left(\begin{array}{cc} 1 & 0 \\ -1 / f & 1 \end{array}\right)$	Gaussian pulse propagation (broadening) in dispersive media $\tau_{p}^{2}(z)=\tau_{p 0}^{2}\left(1+\frac{z^{2}}{\ell_{0}^{2}}\right)$ where $\ell_{0}=\frac{\tau_{p 0}^{2}}{2\left\|\beta_{2}\right\|}$ and group velocity dispersion (GVD) $\beta_{2}=\frac{\lambda^{3}}{2 \pi c^{2}} \frac{d^{2} n}{d \lambda^{2}}=\frac{\lambda^{2}}{2 \pi c} D$
Mirror with radius of curvature R $\left(\begin{array}{cc} 1 & 0 \\ -2 / R & 1 \end{array}\right)$	Spherical dielectric interface $\left(\begin{array}{cc} 1 & 0 \\ \left(1-n_{1} / n_{2}\right) / R & n_{1} / n_{2} \end{array}\right)$	Photon Density (Photon Number per Volume) $\frac{N_{p}}{V}=\frac{I}{h \nu c / n_{g}}$

Gain in a two-level system: $\gamma(v)=\sigma(v)\left[N_{2}-\frac{g_{2}}{g_{1}} N_{1}\right]$ Gain cross section: $\sigma(v)=A_{21} \frac{\lambda^{2}}{8 \pi n^{2}} g(v)$
Lineshape Normalization: $\int g(v) d v=1$
Beer's Law: $\frac{1}{I} \frac{d I}{d z}=-\alpha(I)+\gamma(I)$

Gain or absorption saturation in a homogenously-broadened system:
$\gamma(I)=\frac{\gamma_{0}}{1+I / I_{s}} \quad$ or $\quad \alpha(I)=\frac{\alpha_{0}}{1+I / I_{s}} \quad I_{s}(v)=\frac{h v}{\sigma(v) \tau_{2}}$
Einstein's relation: $\frac{A_{21}}{B_{21}}=\frac{8 \pi n^{3} h v^{3}}{c^{3}} \quad g_{2} B_{21}=g_{1} B_{12} \quad \frac{N_{2}}{N_{1}}=\frac{g_{2}}{g_{1}} e^{-\left(E_{2}-E_{1}\right) / k T}$
Lorentzian line shape:
$g(v)=\frac{\Delta v_{h} / 2 \pi}{\left(v-v_{0}\right)^{2}+\left(\Delta v_{h} / 2\right)^{2}}$
Doppler broadened line shape
$g(v)=\left(\frac{4 \ln 2}{\pi}\right)^{1 / 2} \frac{1}{\Delta v_{D}} \exp \left[(-4 \ln 2)\left(\frac{v-v_{0}}{\Delta v_{D}}\right)^{2}\right]$ with $\Delta v_{D}=\left(\frac{8 k T \ln 2}{M c^{2}}\right)^{1 / 2} v_{0}$
$\frac{d N_{p}}{d t}=\frac{G^{2} S-1}{\tau_{R T}} N_{p}+N_{2} c \sigma$ (Photon number dynamics due to stimulated and spontaneous emission) S (survival factor) $=R_{l} R_{2}$ for a simple two mirror linear cavity, $\quad G^{2}=$ roundtrip gain $\left(\exp \left(2 \gamma \mathrm{~L}_{\mathrm{g}}\right)\right)$ Threshold condition: $\mathrm{SG}^{2}=1$ (linear cavity), $\quad \mathrm{SG}=1$ (ring cavity)

Schawlow-Townes limit for laser linewidth: $\Delta v_{\text {osc }} \approx 2 \pi \frac{h v}{P_{\text {out }}}\left(\Delta v_{1 / 2}\right)^{2}$
At steady-state: $\gamma=\gamma_{t h}=\frac{\gamma_{0}}{1+I / I_{s}}$ (for homogenously broadened)
Inside the gain medium: $\mathrm{I} \approx \mathrm{I}^{+}+\mathrm{I}^{-} \approx 2 \mathrm{I}^{+}$for a high-Q linear (standing-wave) or bidirectional ring cavity, $\mathrm{I} \approx \mathrm{I}^{+}$ for a unidirectional ring cavity.
$\mathrm{I}_{\mathrm{out}}=\mathrm{T}_{\mathrm{a} . . .} \mathrm{T}_{2} \mathrm{I}^{+}$(T_{2} is the output coupling transmission and $\mathrm{T}_{\mathrm{a}} \ldots$ are the transmission of other optical surfaces in the path).

Optimum output coupling: $\mathrm{T}_{2}{ }^{\mathrm{opt}}=-\mathrm{L}_{\mathrm{i}}+\left(\mathrm{g}_{0} \mathrm{~L}_{\mathrm{i}}\right)^{1 / 2}$ where L_{i} accounts for roundtrip internal (useless) losses, $\mathrm{g}_{0}=\gamma_{0} \mathrm{l}_{\mathrm{g}}$ is the unsaturated (small signal) integrated gain. l_{g} is the length of the gain medium.

Q-Switching and Gain-Switching: $\Delta \mathrm{t}_{\mathrm{p}} \approx \tau_{\mathrm{p}}$ (cavity photon lifetime)
Mode-locking: Repetition Rate $=1 / \mathrm{T}_{\mathrm{rt}}=2 \mathrm{Lng}_{\mathrm{g}} / \mathrm{c}$ (linear cavity), Pulsewidth: $\Delta \mathrm{t}_{\mathrm{p}} \approx>1 / \Delta v$
Threshold current density in a diode laser: $\mathrm{J}_{\mathrm{th}}=\mathrm{eN}_{\mathrm{eh}}{ }^{\text {th }} \mathrm{d} / \tau_{\mathrm{r}}$

Physical Constants

$\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$	$\mathrm{~h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$	$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
$\mathrm{k}_{\mathrm{B}}=1.380 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1}$	$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$	$\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$

$$
1 \mathrm{G}=10^{-4} \mathrm{~T}, \quad 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}, \quad 1 \text { dyne }=10^{-5} \mathrm{~N}, 1 \mathrm{erg}=10^{-7} \mathrm{~J}
$$

