Laser Physics I (PHYC/ECE 464)

FALL 2021

Midterm Exam, Closed Book, Closed Notes

Time: 4:00-6:00 pm

NAME \qquad
\qquad
last first

Score

Total $=100$ points

Please staple and return these pages with your exam.

1. (25 points)
(a) Using the ABCD matrix for a roundtrip, derive the stability condition for the ring cavity above in terms of of d / R (with $\mathrm{d}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}$) (ignore astigmatism). (13pts.)

(b) Obtain the position and the magnitude of the minimum beam waist w_{0} assuming a wavelength λ. (12pts.)
2. (25 points) Drawn to scale on the graph below is the relative power transmission of a tunable light source at normal incidence through a Fabry-Perot etalon as the wavelength λ is varied. The etalon is made from of glass having index $\mathrm{n}=1.515$ and thickness d with both sides mirrored with reflectivity R.

a. What is d (8 points)
b. What is the estimated Finesse and the reflectivity R ? (7 points)
c. Draw (on top of the above graph) the transmission for the case where R is purely due to the Fresnel reflectivities at normal incidence (i.e. no coating). What is the finesse and the minimum transmission in this case? (10 points)
3. (25 points) Consider a fundamental Gaussian beam with known Z_{0} and wavelength λ_{0} travelling from left to right, as shown below.

(a) A glass window of thickness d and index of refraction n is inserted at a distance z_{1} prior to $\mathrm{z}=0$ (focus) plane as shown. Derive the distance (Δz) and the direction (sign) by which the new focal point shifts. What is the new z_{0} (does it change at all)?

(b) Repeat part (a) for the case when the original Gaussian beam enters a material of index n with infinite thickness- as shown below.

4. (25 points) A two-level medium solid-state laser with the following property:
$>$ Spontaneous emission lifetime: $\tau_{s p}=1 \mathrm{~ms}$
$>$ Homogeneous linewidth $\Delta v_{h}=1.0 \mathrm{THz}$
$>$ Line center wavelength: $\lambda_{0}=1 \mu \mathrm{~m}$
$>$ Density of active ions (concentration): $N_{\text {total }}=2 \times 10^{19} \mathrm{~cm}^{-3}$
$>$ Non-degeneracy factors: $g_{1}=8, g_{2}=6$
(a) What is the absorption coefficient $\alpha\left(\mathrm{cm}^{-1}\right)$ at the line center $(1 \mu \mathrm{~m})$ when all the molecules are in their ground state (level 1)? (15 points)
(b) What fraction of the molecules needs to be excited into level 2 in order to make this gas transparent (i.e. the onset of gain) at $1 \mu \mathrm{~m}$? (10 points)
