## Laser Physics I (PHYC/ECE 464) FALL 2012

Midterm Exam, Closed Book, Closed Notes

*Time:* 5:30 – 6:45 pm

| NAME |      |       |
|------|------|-------|
|      | last | first |

| Score |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |

Total= 100 points

Please staple and return these pages with your exam.





**1.** (a) Derive the ray matrix for the "thick" plano-convex lens shown below: (20 points)



2. (30 points) Consider the ring cavity (shown below) consisting of one lens and 3 flat mirrors.



- (a) Where is the position of minimum beam waist *w*<sub>0</sub>? Explain and mark the position on cavity diagram. (*no calculations is necessary for this part*) (5*pts.*)
- (b) For a proper starting point of your choice, identify a unit cell and write down the matrix product for a roundtrip. (*7pts.*)
- (c) Give the range of focal lengths f for which this cavity is stable. (8pts.)
- (d) Obtain the Rayleigh range  $Z_0$  as a function of f. (10 pts.)

## 3. (25 points)

Drawn to scale in the graph below is the power transmission of a scanning Fabri-Perot as the distance is increased from its intial 1cm to 1cm+1.44 $\mu$ m. The source is a single wavelength laser at wavelength  $\lambda_0$ .



a) What is  $\lambda_0$ ? (5*pts.*)

b) What is  $\Delta v_{1/2}$  (in MHz)? (7 *pts.*)

c) What is the finesse? (6 pts.)

d) What is the photon lifetime? (7 pts.)

**4.** (25 points) Consider a pressure-broadened gaseous two-level medium with the following property:

- Spontaneous emission lifetime:  $\tau_{sp}=1 \ \mu s$
- Homogeneous linewidth  $\Delta v_h = 1.5 \text{ THz}$
- Line center wavelength:  $\lambda_0 = 5 \ \mu m$
- Molecular density (concentration):  $N_{total} = 2.5 \times 10^{19} \text{ cm}^{-3}$
- Non-degeneracy factors:  $g_1=5$ ,  $g_2=1$
- (a) What is the absorption coefficient  $\alpha$ (cm<sup>-1</sup>) at the line center (5 µm) when all the molecules are in their ground state (level 1)? (12.5 pts.)

(b) What fraction of the molecules need to be excited into level 2 to make this gas transparent (i.e. the onset of gain) at 5  $\mu$ m? (12.5pts.)



Hermite-Gaussian Beams:  $\frac{E(x, y, z)}{E_0} = H_m \left(\frac{\sqrt{2}x}{w(z)}\right) H_p \left(\frac{\sqrt{2}y}{w(z)}\right) \frac{w_0}{w(z)} \exp\left(-i\frac{kr^2}{2q(z)}\right) \times \exp\left(-i\left[kz - (1+m+p)\tan^{-1}(z/z0)\right]\right)$   $\frac{1}{q(z)} = \frac{1}{R(z)} - i\frac{\lambda}{\pi w^2(z)}, \qquad w^2(z) = w_0^2 \left(1 + \frac{z^2}{z_0^2}\right), \qquad R(z) = z \left(1 + \frac{z_0^2}{z^2}\right), \qquad z_0 = \frac{\pi m w_0^2}{\lambda_0}$   $k = n\frac{\omega}{c} = \frac{2\pi n}{\lambda_0} \qquad \text{Irradiance: } I = \langle S \rangle = \frac{nc\varepsilon_0}{2} E_0^2 \qquad \text{Snell's Law: } n_i \sin\theta_i = n_i \sin\theta_i$ Fresnel:  $\eta = \frac{n_i \cos\theta_i - n_i \cos\theta_i}{n_i \cos\theta_i + n_i \cos\theta_i} = \frac{\tan(\theta_i - \theta_i)}{\tan(\theta_i + \theta_i)} \qquad r_\perp = -\frac{n_i \cos\theta_i - n_i \cos\theta_i}{n_i \cos\theta_i + n_i \cos\theta_i} = -\frac{\sin(\theta_i - \theta_i)}{\sin(\theta_i + \theta_i)}$ 

$$t_{\parallel} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i} = \frac{2\sin \theta_t \cos \theta_i}{\sin(\theta_i + \theta_t) \cos(\theta_i - \theta_t)} \qquad t_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t} = \frac{2\sin \theta_t \cos \theta_i}{\sin(\theta_i + \theta_t)}$$

when there is total internal reflection at an air or vacuum interface:

$$r_{\parallel} = \frac{\cos\theta_i - in_i\sqrt{n_i^2\sin^2\theta_i - 1}}{\cos\theta_i + in_i\sqrt{n_i^2\sin^2\theta_i - 1}} \qquad r_{\perp} = \frac{n_i\cos\theta_i - i\sqrt{n_i^2\sin^2\theta_i - 1}}{n_i\cos\theta_i + i\sqrt{n_i^2\sin^2\theta_i - 1}}$$

Lens-maker's formula:  

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
Lens Transformation of a Gaussian beam:  

$$\frac{1}{R_{out}} = \frac{1}{R_{in}} - \frac{1}{f}$$

Fabry-Perot Transmission and Reflection (general; with gain or absorption):

$$T(\theta, G_0) = \frac{G_0(1-R_1)(1-R_2)}{\left(1-G_0\sqrt{R_1R_2}\right)^2 + 4G_0\sqrt{R_1R_2}\sin^2(\theta)}$$

$$R(\theta, G_0) = \frac{\left(\sqrt{R_1} - G_0\sqrt{R_2}\right)^2 + 4G_0\sqrt{R_1R_2}\sin^2(\theta)}{\left(1-G_0\sqrt{R_1R_2}\right)^2 + 4G_0\sqrt{R_1R_2}\sin^2(\theta)}$$

$$Pree Spectral Range: \Delta v_{FSR} = \frac{c}{2nd} = \frac{1}{\tau_{RT}}$$

$$Photon Lifetime:$$

$$\tau_p = \frac{\tau_{RT}}{1-R_1R_{21}} \approx \frac{1}{2\pi\Delta\nu_{1/2}}$$

$$General Resonance Condition:$$

$$roundtrip phase change = q2\pi$$
Blackbody Radiation (energy density):  $\rho(v)dv = \frac{8\pi n^3 hv^3 dv}{c^3} \frac{1}{c^{hv/R_1}}$ 

## **Formula Sheet** (page 2) *PHYC/ECE 464 (Laser Physics I)- University of New Mexico* Instructor: Mansoor Sheik-Bahae

Gain in a two-level system: 
$$\gamma(v) = \sigma(v) \left[ N_2 - \frac{g_2}{g_1} N_1 \right]$$
 Gain cross section:  $\sigma(v) = A_{21} \frac{\lambda^2}{8\pi n^2} g(v)$   
Lineshape Normalization:  $\int g(v) dv = 1$  Beer's Law:  $\frac{1}{I} \frac{dI}{dz} = -\alpha(I) + \gamma(I)$ 

Gain or absorption saturation in a homogenously-broadened system:

$$\gamma(I) = \frac{\gamma_0}{1 + I/I_s} \quad \text{or} \quad \alpha(I) = \frac{\alpha_0}{1 + I/I_s} \qquad I_s(v) = \frac{hv}{\sigma(v)\tau_2}$$
  
Einstein's relation:  $\frac{A_{21}}{B_{21}} = \frac{8\pi n^3 hv^3}{c^3} \qquad g_2 B_{21} = g_1 B_{12} \qquad \frac{N_2}{N_1} = \frac{g_2}{g_1} e^{-(E_2 - E_1)/kT}$ 

Degeneracy factors of level i:  $g_i = 2J_i + 1$  ( $J_i$  is total angular momentum quantum number of that level)

Laser amplifier gain:  $\ln \frac{G}{G_0} + \frac{G-1}{I_s/I_{in}} = 0$  where  $G_0 = \exp(\gamma_0 L_g)$  is the small-signal gain,  $G = I_{out}/I_{in}$ 

| ABCD Matrices | $\begin{pmatrix} A \\ C \end{pmatrix}$ | $\begin{pmatrix} B \\ D \end{pmatrix}$ | AD-BC=1 | $\begin{pmatrix} r_2 \\ r_2 \end{pmatrix}$ | $ = \begin{pmatrix} A \\ C \end{pmatrix}$ | $\begin{pmatrix} B \\ D \end{pmatrix}$ | $\begin{pmatrix} r_1 \\ r'_1 \end{pmatrix}$ | ) |
|---------------|----------------------------------------|----------------------------------------|---------|--------------------------------------------|-------------------------------------------|----------------------------------------|---------------------------------------------|---|
|               |                                        |                                        |         |                                            |                                           |                                        |                                             |   |

| Free space of length d                   | Dielectric interface                                         | ABCD rule for Gaussian beams:           |  |  |
|------------------------------------------|--------------------------------------------------------------|-----------------------------------------|--|--|
| $\begin{pmatrix} 1 & d \end{pmatrix}$    | $(\text{from } n_1 \text{ to } n_2)$                         |                                         |  |  |
| $\begin{pmatrix} 0 & 1 \end{pmatrix}$    | $\begin{pmatrix} 1 & 0 \\ 0 & n \ \end{pmatrix}$             | $q_2 = \frac{Aq_1 + B}{Ca_1 + D}$ where |  |  |
|                                          | $(0  n_1 \mid n_2)$                                          | $Cq_1 + D$                              |  |  |
| Propagation in a medium of               | Thin lens of focal length f                                  |                                         |  |  |
| length d and index $n_2=n$               | $\begin{pmatrix} 1 & 0 \end{pmatrix}$                        | $a(z) = z + iz_{a}$                     |  |  |
| immersed in vacuum $(n_1=1)$ .           | -1/f 1                                                       |                                         |  |  |
| $\begin{pmatrix} 1 & d/n \end{pmatrix}$  |                                                              | or                                      |  |  |
| $\begin{pmatrix} 0 & 1 \end{pmatrix}$    |                                                              | $1$ $-1$ $-i$ $\lambda_0$               |  |  |
| Mirror with radius of curvature R        | Spherical dielectric interface                               | $q(z) = R(z) + \pi n w(z)^2$            |  |  |
| $\begin{pmatrix} 1 & 0 \end{pmatrix}$    | $\begin{pmatrix} 1 & 0 \end{pmatrix}$                        |                                         |  |  |
| $\begin{pmatrix} -2/R & 1 \end{pmatrix}$ | $\left( \left( 1 - n_1 / n_2 \right) / R  n_1 / n_2 \right)$ |                                         |  |  |
|                                          |                                                              | Stability condition: -1<(A+D)/2<1       |  |  |

Laser Threshold:  $G_0^2S=1$ 

S= passive cavity survival factor (= $R_1R_2$  for a simple two mirror cavity)

Photon Density (Photon Number per Volume)  $\frac{N_p}{V} = \frac{I}{hvc/n_g}$ 



## **Fundamental Physical Constants**



| Quantity                  | Symbol           | Value                                                 |
|---------------------------|------------------|-------------------------------------------------------|
| Speed of light            | c                | $2.99792458 \times 10^8 m/s$                          |
| Planck constant           | h                | $6.6260755 \ x \ 10^{-34} \ J \cdot s$                |
| Planck constant           | h                | $4.1356692 \times 10^{-15} eV \cdot s$                |
| Planck hbar               | ħ                | $1.0545727 \ x \ 10^{-34} \ J \cdot s$                |
| Planck hbar               | ħ                | $6.582121 \times 10^{-16} eV \cdot s$                 |
| Gravitation constant      | G                | 6.67259 x $10^{-11}$ $m^3 \cdot kg^{-1} \cdot s^{-2}$ |
| Boltzmann constant        | k                | $1.380658 \ x \ 10^{-23} \ J / K$                     |
| Molar gas constant        | R                | 8.314510 $J / mol \cdot K$                            |
| Charge of electron        | e                | $1.60217733 \times 10^{-19} C$                        |
| Permeability of vacuum    | $\mu_0$          | $4\pi x 10^{-7} N/A^2$                                |
| Permittivity of vacuum    | $\epsilon_0$     | 8.854187817 x $10^{-12}$ F / m                        |
| Mass of electron          | m <sub>e</sub>   | 9.1093897 x $10^{-31}$ kg                             |
| Mass of proton            | $m_p$            | $1.6726231 \ x \ 10^{-27} \ kg$                       |
| Mass of neutron           | $m_n$            | $1.6749286 \ x \ 10^{-27} \ kg$                       |
| Avogadro's number         | $N_A$            | 6.0221367 x 10 <sup>23</sup> / mol                    |
| Stefan-Boltzmann constant | σ                | 5.67051 x 10 <sup>-8</sup> W / $m^2 \cdot K^4$        |
| Rydberg constant          | $R_{\circ\circ}$ | 10973731.534 $m^{-1}$                                 |
| Bohr magneton             | $\mu_B$          | 9.2740154 x 10 <sup>-24</sup> J / T                   |
| Bohr radius               | $a_0$            | $0.529177249 \ x \ 10^{-10} m$                        |
| Standard atmosphere       | atm              | 101325 Pa                                             |

 $1G = 10^{-4} T$ ,  $1 eV = 1.602 \times 10^{-19} J$ ,  $1 dyne = 10^{-5} N$ ,  $1 erg = 10^{-7} J$