Laser Physics I (PHYC/ECE 464)

FALL 2010

Midterm Exam, Closed Book, Closed Notes

Time: 5:30-6:45 pm

NAME \qquad
last
first

Total= 100 points (+10 Bonus points)

Please staple and return these pages with your exam.

1. A laser beam with wavelength λ_{0} is incident from left on a lens (f) placed at a distance z_{1} after its minimum waist. (30 points)

a) What is the \mathbf{q}, beam radius \mathbf{w} and radius of curvature \mathbf{R} at the following locations:
a. 1 Just before the lens?
a. 2 Right after the lens?
a. 3 At an arbitrary distance z_{2} after the lens?
b) Show how to determine the location $\left(\mathrm{Z}_{\mathrm{f}}\right)$ and the value (w_{02}) of the new focus in terms of the given parameters.
2. (20 points) Consider the laser cavity (shown below) consisting of two concave mirrors (both with radius \mathbf{R}) and one flat mirror.

(a) Derive the stability condition.
(b) Find the location and the value of the minimum beam waist w_{0}.

3. (25 points)

Drawn to scale on the graph below is the relative power transmission through a FabryPerot cavity when the distance d is increased slightly. The source is a He:Ne laser at $\lambda_{0}=$ C28A. $1 \mu \mathrm{~m}$

(a) What is the distance δd ?
(b) What is the finesse of the cavity?
(c) What is the cavity Q ?
(Note: this was a HW problem)
4. (25 points) Consider the ring laser system with its homogenous lineshape shown below. The following parameters are known:

$$
\begin{aligned}
& A_{21}=2.5 \times 10^{6} s^{-1}, \\
& n(\text { gain medium })=1.5 \text {, } \\
& \text { upper state lifetime }\left(\tau_{2}\right)=10 \mathrm{~ns} \text {, and } \\
& \mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{b}}=0.995 \% \quad\left(\mathrm{~g}_{1}=\mathrm{g}_{2}=1\right)
\end{aligned}
$$

Use the given information to estimate:
(a) The stimulated emission cross section (σ) and the saturation intensity $\left(\mathrm{I}_{\mathrm{s}}\right)$ at 1020 nm .
(b) The laser threshold population inversion $\left(\mathrm{N}_{2}-\mathrm{N}_{1}\right)_{\mathrm{th}}$.

Bonus (10 points): If the cavity round-trip time is 10 ns , estimate the number of longitudinal modes that will initially experience gain if pumped 2 times above the laser threshold.

Hermite-Gaussian Beams:

$$
\begin{aligned}
& \frac{E(x, y, z)}{E_{0}}=H_{m}\left(\frac{\sqrt{2} x}{w(z)}\right) H_{p}\left(\frac{\sqrt{2} y}{w(z)}\right) \frac{w_{0}}{w(z)} \exp \left(-i \frac{k r^{2}}{2 q(z)}\right) \times \exp \left(-i\left[k z-(1+m+p) \tan ^{-1}(z / z 0)\right]\right) \\
& \frac{1}{q(z)}=\frac{1}{R(z)}-i \frac{\lambda}{\pi w^{2}(z)}, \quad w^{2}(z)=w_{0}^{2}\left(1+\frac{z^{2}}{z_{0}^{2}}\right), \quad R(z)=z\left(1+\frac{z_{0}^{2}}{z^{2}}\right), \quad z_{0}=\frac{\pi n w_{0}^{2}}{\lambda_{0}}
\end{aligned}
$$

$k=n \frac{\omega}{c}=\frac{2 \pi n}{\lambda_{0}} \quad$ Irradiance: $I=\langle S\rangle=\frac{n c \varepsilon_{0}}{2} E_{0}^{2} \quad$ Snell's Law: $n_{i} \sin \theta_{i}=n_{t} \sin \theta_{t}$

$$
\begin{aligned}
\text { Fresnel: } & r_{\|}=\frac{n_{t} \cos \theta_{i}-n_{i} \cos \theta_{t}}{n_{t} \cos \theta_{i}+n_{i} \cos \theta_{t}}=\frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)} \\
t_{\|}=\frac{r_{\perp}=-\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}=-\frac{\sin \left(\theta_{i}-\theta_{t}\right)}{\sin \left(\theta_{i}+\theta_{t}\right)}}{n_{i} \cos \theta_{t}+n_{t} \cos \theta_{i}}=\frac{2 \sin \theta_{\mathrm{t}} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right) \cos \left(\theta_{i}-\theta_{t}\right)} & t_{\perp}=\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}=\frac{2 \sin \theta_{\mathrm{t}} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right)}
\end{aligned}
$$

when there is total internal reflection at an air or vacuum interface:

$$
r_{\|}=\frac{\cos \theta_{i}-i n_{i} \sqrt{n_{i}^{2} \sin ^{2} \theta_{i}-1}}{\cos \theta_{i}+i n_{i} \sqrt{n_{i}^{2} \sin ^{2} \theta_{i}-1}} \quad r_{\perp}=\frac{n_{i} \cos \theta_{i}-i \sqrt{n_{i}^{2} \sin ^{2} \theta_{i}-1}}{n_{i} \cos \theta_{i}+i \sqrt{n_{i}^{2} \sin ^{2} \theta_{i}-1}}
$$

Lens-maker's formula:
$\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

Lens Transformation of a Gaussian beam:
$\frac{1}{R_{\text {out }}}=\frac{1}{R_{\text {in }}}-\frac{1}{f}$

Fabry-Perot Transmission and Reflection (general; with gain or absorption):

$$
\begin{aligned}
& T\left(\theta, G_{0}\right)=\frac{G_{0}\left(1-R_{1}\right)\left(1-R_{2}\right)}{\left(1-G_{0} \sqrt{R_{1} R_{2}}\right)^{2}+4 G_{0} \sqrt{R_{1} R_{2}} \sin ^{2}(\theta)} \\
& R\left(\theta, G_{0}\right)=\frac{\left(\sqrt{R_{1}}-\sqrt{R_{2}}\right)^{2}+4 G_{0} \sqrt{R_{1} R_{2}} \sin ^{2}(\theta)}{\left(1-G_{0} \sqrt{R_{1} R_{2}}\right)^{2}+4 G_{0} \sqrt{R_{1} R_{2}} \sin ^{2}(\theta)} \\
& 2 \Delta \theta_{1 / 2}=\frac{1-G_{0} \sqrt{R_{1} R_{2}}}{G_{0}^{1 / 2} \sqrt[4]{R_{1} R_{2}}} \\
& \theta=k d=\frac{\omega n d}{c} \\
& \text { for plane waves }
\end{aligned}
$$

Finesse $_{F}=\frac{\pi \sqrt[4]{R_{1} R_{2}}}{1-\sqrt{R_{1} R_{2}}}=\frac{\Delta v_{F S R}}{\Delta v_{1 / 2}}$
Free Spectral Range: $\Delta v_{F S R}=\frac{c}{2 n d}=\frac{1}{\tau_{R T}}$
Photon Lifetime: $\quad \tau_{p}=\frac{\tau_{R T}}{1-R_{1} R_{2}} \square \frac{1}{2 \pi \Delta \nu_{1 / 2}}$

General Resonance Condition:
roundtrip phase change $=q 2 \pi$

Blackbody Radiation (energy density): $\rho(v) d v=\frac{8 \pi n^{3} h v^{3} d v}{c^{3}} \frac{1}{\mathrm{e}^{h / k T}-1}$

Lorentzian line shape:
e.g. in natural or pressure broadened $g(v)=\frac{\Delta v_{h} / 2 \pi}{\left(v-v_{0}\right)^{2}+\left(\Delta v_{h} / 2\right)^{2}}$

Doppler broadened line shape
$g(v)=\left(\frac{4 \ln 2}{\pi}\right)^{1 / 2} \frac{1}{\Delta v_{D}} \exp \left[(-4 \ln 2)\left(\frac{v-v_{0}}{\Delta v_{D}}\right)^{2}\right]$ with
$\Delta v_{D}=\left(\frac{8 k T \ln 2}{M c^{2}}\right)^{1 / 2} v_{0}$

Formula Sheet (page 2)
PHYC/ECE 464 (Laser Physics I)- University of New Mexico
Instructor: Mansoor Sheik-Bahae

Gain in a two-level system: $\gamma(v)=\sigma(v)\left[N_{2}-\frac{g_{2}}{g_{1}} N_{1}\right]$ Gain cross section: $\sigma(v)=A_{21} \frac{\lambda^{2}}{8 \pi n^{2}} g(v)$
Lineshape Normalization: $\quad \int g(v) d v=1 \quad$ Beer's Law: $\frac{1}{I} \frac{d I}{d z}=-\alpha(I)+\gamma(I)$

Gain or absorption saturation in a homogenously-broadened system:
$\gamma(I)=\frac{\gamma_{0}}{1+I / I_{s}} \quad$ or $\quad \alpha(I)=\frac{\alpha_{0}}{1+I / I_{s}} \quad I_{s}(v)=\frac{h v}{\sigma(v) \tau_{2}}$
Einstein's relation: $\quad \frac{A_{21}}{B_{21}}=\frac{8 \pi n^{3} h v^{3}}{c^{3}} \quad g_{2} B_{21}=g_{1} B_{12} \quad \frac{N_{2}}{N_{1}}=\frac{g_{2}}{g_{1}} e^{-\left(E_{2}-E_{1}\right) / k T}$

Laser amplifier gain: $\ln \frac{G}{G_{0}}+\frac{G-1}{I_{s} / I_{\text {in }}}=0$ where $\mathrm{G}_{0}=\exp \left(\gamma_{0} \mathrm{~L}_{\mathrm{g}}\right)$ is the small-signal gain, $G=I_{\text {out }} / I_{\text {in }}$
ABCD Matrices $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$
AD-BC=1

$$
\binom{r_{2}}{r_{2}^{\prime}}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{r_{1}}{r_{1}^{\prime}}
$$

ABCD rule for
Gaussian Beams
$q_{2}=\frac{A q_{1}+B}{C q_{1}+D}$
where
Gaussian pulse propagation (broadening) in dispersive media
$\tau_{p}^{2}(z)=\tau_{p 0}^{2}\left(1+\frac{z^{2}}{\ell_{0}^{2}}\right)$ where
dispersion length $\ell_{0}=\frac{\tau_{p 0}^{2}}{2\left|\beta_{2}\right|}$ and
group velocity dispersion (GVD)
$\beta_{2}=\frac{\lambda^{3}}{2 \pi c^{2}} \frac{d^{2} n}{d \lambda^{2}}=\frac{\lambda^{2}}{2 \pi c} D$

Free space of length d $\left(\begin{array}{ll}1 & d \\ 0 & 1\end{array}\right)$	Dielectric interface (from n_{1} to $\left.\mathrm{n}_{2}\right)$ $\left(\begin{array}{cc}1 & 0 \\ 0 & n_{1} / n_{2}\end{array}\right)$
Propagation in a medium of length d and index $\mathrm{n}_{2}=\mathrm{n}$ immersed in vacuum $\left(\mathrm{n}_{1}=1\right)$.	$\left.\begin{array}{l}\text { Thin lens of focal length } \mathrm{f} \\ \left(\begin{array}{ll}1 & d / n \\ 0 & 1\end{array}\right) \\ -1 / f \\ \hline\end{array}\right)$

Mirror with radius of curvature R $\left(\begin{array}{cc}1 & 0 \\ -2 / R & 1\end{array}\right)$	$\left.\begin{array}{cc}\text { Spherical dielectric interface } \\ \left(1-n_{1} / n_{2}\right) / R & n_{1} / n_{2}\end{array}\right)$

Photon Density (Photon Number per Volume) $\frac{N_{p}}{V}=\frac{I}{h v c / n_{g}}$
$\frac{d N_{p}}{d t}=\frac{G^{2} S-1}{\tau_{R T}} N_{p}+N_{2} c \sigma$ (Photon number growth dynamics due to stimulated and spontaneous emission processes)
S (survival factor) $=R_{l} R_{2}$ for a simple two mirror cavity, $G^{2}=$ roundtrip gain
Schawlow-Townes limit for laser linewidth: $\Delta v_{\text {osc }} \approx 2 \pi \frac{h \nu}{P_{\text {out }}}\left(\Delta v_{1 / 2}\right)^{2}$

Fundamental Physical Constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Planck constant	h	$6.6260755 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Planck constant	h	$4.1356692 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
Planck hbar	万	$1.0545727 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Planck hbar	\hbar	$6.582121 \times 10^{-16} \mathrm{eV} \cdot \mathrm{s}$
Gravitation constant	G	$6.67259 \times 10^{-11} \mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~s}^{-2}$
Boltzmann constant	k	$1.380658 \times 10^{-23} \quad J / K$
Molar gas constant	R	$8.314510 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
Charge of electron	e	$1.60217733 \times 10^{-19} \mathrm{C}$
Permeability of vacuum	μ_{0}	$4 \pi \times 10^{-7} \quad N / A^{2}$
Permittivity of vacuum	ε_{0}	$8.854187817 \times 10^{-12} \quad \mathrm{~F} / \mathrm{m}$
Mass of electron	m_{e}	$9.1093897 \times 10^{-31} \mathrm{~kg}$
Mass of proton	m_{p}	$1.6726231 \times 10^{-27} \mathrm{~kg}$
Mass of neutron	m_{n}	$1.6749286 \times 10^{-27} \mathrm{~kg}$
Avogadro's number	$N_{\text {A }}$	$6.0221367 \times 10^{23} / \mathrm{mol}$
Stefan-Boltzmann constant	σ	$5.67051 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$
Rydberg constant	$R_{\text {co }}$	$10973731.534 \mathrm{~m}^{-1}$
Bohr magneton	μ_{B}	$9.2740154 \times 10^{-24} J / T$
Bohr radius	a_{0}	$0.529177249 \times 10^{-10} \mathrm{~m}$
Standard atmosphere	atm	101325 Pa

$$
1 \mathrm{G}=10^{-4} \mathrm{~T}, \quad 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}, 1 \text { dyne }=10^{-5} \mathrm{~N}, 1 \mathrm{erg}=10^{-7} \mathrm{~J}
$$

